BIG AND LITTLE THOMPSON RIVERS NONPOINT SOURCE WATERSHED-BASED PLAN

DRAFT REPORT RSI-3425

PREPARED BY

Cindie Kirby

Seattle Briscoe

Natalie Acosta

Cathy McCague

RESPEC

3824 Jet Drive

Rapid City, South Dakota 57703

Communication Infrastructure Group 1660 Lincoln Street; Suite 1800 Denver, Colorado 80264

PREPARED FOR

North Front Range Water Quality Planning Association 257 Johnstown Center Drive; Unit 206 Johnstown, Colorado 80534

DECEMBER 2024

Project Number W0545.23001

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
2.0	WAT	ERSHED CHARACTERIZATION	7
3.0	EXIS	TING WATERSHED PLANS AND PROJECTS	17
4.0	STAN	IDARDS AND IMPAIRMENTS	21
5.0	SOUR	RCE ASSESSMENT	27
	5.1	NUTRIENTS AND SEDIMENT	27
	5.2	E. COLI	31
	5.3	HEAVY METALS	38
6.0	PRIO	RITY AREAS FOR IMPLEMENTATION	40
	6.1	NUTRIENTS AND SEDIMENT	40
	6.2	E. COLI	44
	6.3	HEAVY METALS	46
7.0	BEST	MANAGEMENT PRACTICES LOAD REDUCTIONS	48
	7.1	NUTRIENTS AND SEDIMENT	48
	7.2	E. COLI	62
	7.3	HEAVY METALS	64
8.0	PAST	AND CURRENT BEST MANAGEMENT PRACTICES	70
9.0	RECO	DMMENDED BEST MANAGEMENT PRACTICES	73
	9.1	FUTURE MUNICIPAL SEPARATE STORM SEWER SYSTEM AREAS	73
	9.2	DEVELOPED	73
	9.3	AGRICULTURAL (CROPLAND, PASTURELAND, AND FEEDLOT BEST MANAGEMENT PRACTICES)	74
	9.4	FOREST	74
	9.5	ABANDONED MINE LANDS	75
10.0	INFO	RMATION, EDUCATION, AND OUTREACH	76
11.0	CRIT	ERIA TO ASSESS PROGRESS	78
12.0	MON	ITORING BEST MANAGEMENT PRACTICES EFFECTIVENESS	86
13.0	TECH	INICAL AND FINANCIAL ASSISTANCE SOURCES	87
	13.1	INCENTIVE PROGRAMS	91
		13.1.1 Cost-Share Programs	91
		13.1.2 Fee Discounts	91
		13.1.3 Low-Interest Loans	91

TABLE OF CONTENTS (CONTINUED)

	13.1.4 Water Quality Trading	91
13.2	POTENTIAL FUNDING	91
	13.2.1 Cities	91
	13.2.2 Counties, Watershed Districts, and Authorities	
	13.2.3 State	92
	13.2.4 Federal	93
	13.2.4.1 U.S. Environmental Protection Agency	93
	13.2.4.2 U.S. Department of Agriculture's Natural Resources Conservation Service	
	13.2.5 Private/Other Sources	
	RENCES	
APPENDIX	A SURVEY QUESTIONS	A-1
APPENDIX	B MAPS OF IMPAIRED PARAMETERS	B-1
APPENDIX	C APPLICABLE WATER QUALITY BOX PLOTS BY HUC10	C-1
APPENDIX	D PLET SCENARIO REDUCTIONS	D-1
ADDENIDIV	E DECDEC CTAVEHOLDED TOOLKIT	C _1

LIST OF TABLES

TABLE		PAG
1-1	Sections of the Watershed-Based Plan That Fulfill the U.S. Environmental Protection Agency's Nine Key Elements for Watershed Planning	3
1-2	Stakeholder Recipients of Two Surveys With Responses Represented by an "X"	4
3-1	Watershed Planning and Major Projects in the Big Thompson River HUC8	17
3-2	Nonpoint Source Grants Implemented in the Big Thompson River HUC8	19
3-3	Other Nonpoint Source Projects (South Platte and/or Statewide)	20
4-1	Clean Water Act Section 303(d)-Impaired Waterbodies Summary	23
4-2	Flows, Current Loads, Goal Loads, and Reductions to Reach Goals in Most Downstream HUC10 of the Project Area	26
5-1	Land Cover	29
5-2	Nitrogen Sources	29
5-3	Phosphorus Sources	30
5-4	Sediment Sources	30
5-5	Total Fire Acres per HUC10 per Year (2000-2021)	31
5-6	E. coli Production Rates From Literature Sources	33
5-7	Estimated Number of Animals, <i>E. coli</i> Produced, and Percent of <i>E. coli</i> Produced in Each HUC10	35
5-8	Number of Identified Abandoned Mine Lands per HUC10	39
5-9	Acres of Irrigation and Pierre Shale	39
7-1	PLET Cropland Best Management Practices and Average Reduction Metric	50
7-2	PLET Pasture Best Management Practices and Average Reduction Metric	51
7-3	PLET Feedlot Best Management Practices and Average Reduction Metric	52
7-4	PLET Forest Best Management Practices and Average Reduction Metric	53
7-5	PLET Urban Best Management Practices and Average Reduction Metric	54
7-6	Reductions From Priority PLET Best Management Practices Run on 25 Percent of Each Applicable Land Cover	56
7-7	Most Effective Sediment to Surface Water Reducing Agricultural Best Management Practices From the Colorado Natural Resources Conservation Service Conservation Practice Physical Effects	58
7-8	Most Effective Sediment (Greater Than 10 Percent) Reducing Urban Best Management Practices From the International Best Management Practice Database	59
7-9	Most Effective Nutrient to Surface Water Reducing Agricultural Best Management Practices From the Colorado Natural Resources Conservation Service Conservation Practice Physical Effects	60

RSI-3425 DRAFT

LIST OF TABLES (CONTINUED)

TABLE		PAGE
7-10	Most Effective Nitrogen (Greater Than 10 Percent) Reducing Urban Best Management Practices From the International Best Management Practice Database	61
7-11	Most Effective Phosphorus (Greater Than 10 Percent) Reducing Urban Best Management Practices From the International Best Management Practice Database	62
7-12	Most Effective Bacteria (Pathogen) to Surface Water Reducing Agricultural Best Management Practices From the Colorado Natural Resources Conservation Service Conservation Practice Physical Effects	63
7-13	Most Effective <i>E. coli</i> (Greater Than 10 Percent) Reducing Urban Best Management Practices From the International Best Management Practice Database	64
7-14	Most Effective Heavy Metals to Surface Water Reducing Agricultural Best Management Practices From the Colorado Natural Resources Conservation Service Conservation Practice Physical Effects	68
7-15	Most Effective Heavy Metal (Greater Than 10 Percent) Reducing Urban Best Management Practices From the International Best Management Practice Database	69
8-1	Best Management Practices Implemented Annually on More Than 50 Square Miles in Colorado Since 2005	71
11-1	Best Management Practices	79
11-2	Dominant Land Uses, Sources, and Priority Practices by HUC10 for Nutrients and Sediment	81
11-3	E. coli Impairment Status, Primary Sources, Associated Land Use, and Priority Practices by HUC10	82
11-4	Dominant Land Uses, Metal Impairments, Associated Causes, and Priority Practices by HUC10	83
11-5	Reductions Achieved by Implementation of Priority Cropland Practices	85
11-6	Schedule for Primary Cropland Practices to Achieve Nutrient Goals	85
13-1	Sources of Technical and Financial Assistance	88

LIST OF FIGURES

FIGURE		PAGE
2-1	Big Thompson River HUC8 Project Area	8
2-2	National Land Cover Dataset 2019 Land Use	10
2-3	Average Annual Precipitation (1981 to 2010)	12
2-4	Geology	14
2-5	Hydrologic Soil Group	16
4-1	Impaired Waterbodies	22
6-1	Nitrogen Contributions per HUC10	41
6-2	Phosphorus Contributions per HUC10	42
6-3	Sediment Contributions per HUC10	43
6-4	Bacteria Produced per HUC10	45
6-5	Density of Abandoned Mine Lands for Each HUC10	47

LIST OF ABBREVIATIONS

μg/L micrograms per liter

ACEP Agricultural Conservation Easement Program

AFA Alternative Funding Arrangement

AFO animal feeding operation

AFP Announcement for Funding Proposals

AML abandoned mine land

AWEP Agricultural Water Enhancement Program

BMP best management practices

BMPDB International Stormwater Best Management Practices Database

BTWC Big Thompson Watershed Coalition
CAFO concentrated animal feed operation
CASTNET Clean Air Status and Trends Network

CAWA Colorado Ag Water Alliance
CCR Code of Colorado Regulation

CDPHE Colorado Department of Public Health and Environment

cfs cubic feet per second

cfu/head/day colony-forming units per head per day

CIG Conservation Innovation Grants

CPPE Conservation Practice Physical Effects

CPS Conservation Practice Standard
CRP Conservation Reserve Program
CSP Conservation Stewardship Program

CSU Colorado State University

CTA Conservation Technical Assistance

CWA Clean Water Act

CWCB Colorado Water Conservation Board
CWSRF Clean Water State Revolving Fund
DRUM Defense-Related Uranium Mine

EPA U.S. Environmental Protection Agency
EQIP Environmental Quality Incentives Program
ESRI Environmental Systems Research Institute, Inc.
EWP Emergency Watershed Protection Program
FEMA Federal Emergency Management Agency
FRPP Farm and Ranch Lands Protection Program

GRP Grass Reserve Program HUC Hydrologic Unit Code

lb/day pounds per day lb/year pounds per year

LID Low Impact Development

mg/L milligrams per liter

mi² square miles

MIDS Minimal Impact Design Standards

LIST OF ABBREVIATIONS (CONTINUED)

mL milliliter

mpn most probable number

MS4 Municipal Separate Storm Sewer System
NADP National Atmospheric Deposition Program

NFRWQPA North Front Range Water Quality Planning Association

NLCD National Land Cover Dataset

NPS Nonpoint Source

NRCS Natural Resources Conservation Service

NWQI National Water Quality Initiative

OWTS Onsite Wastewater Treatment System

PEPO Public Education, Participation, and Outreach

PFAS per- and polyfluoroalkyl substances

PLET Pollutant Load Estimation Tool

RCD Resource Conservation and Development
RCPP Regional Conservation Partnership Program

SSURGO Soil Survey Geographic Database

SWAP Source Water Assessment and Protection

SWPPP stormwater pollution prevention plan

TMDL total maximum daily load
TSS total suspended solids
USBR U.S. Bureau of Reclamation
USDA U.S. Department of Agriculture
USFWS U.S. Fish and Wildlife Service

USGS U.S. Geological Survey

WFPO Watershed Protection and Flood Prevention Operations

WHIP Wildlife Habitat Incentive Program

WHRB Watershed Rehabilitation
WRP Wetlands Reserve Program
WRSF Water Supply Reserve Funds
WWTP Wastewater Treatment Plant

RSI-3425 DRAFT

1.0 INTRODUCTION

The primary purpose of this watershed-based plan is to recommend best management practices (BMPs) that would reduce pollutants of concern within the Big and Little Thompson Rivers Watershed (Hydrologic Unit Code [HUC] 10190006) from nonpoint sources (NPSs). Although this watershed-based plan is a stand-alone NPS plan, water planning should be done in a holistic manner, with teamwork between point and NPSs of pollution. Pollution reductions from NPSs upstream of point sources reduce the strain on the point sources. Municipal, industrial, and agricultural entities working together toward the shared goal of protecting waterbodies before they become impaired will reduce future regulations on these entities.

The watershed-based plan is based on an adaptive approach that emphasizes making continued progress toward achieving milestones and load reduction by identifying the most impactful implementation measures for priority areas. This watershed-based plan summarizes past conservation accomplishments and recommends implementation actions that can assist residents, landowners, and stakeholders in the project area to improve water quality. Private, local, state, and federal partnership efforts should continue to support and promote the implementation of management measures while additional water quality monitoring is conducted to guide watershed plan revisions and assess adaptive implementation activities.

The watershed-based plan builds on past conservation accomplishments in the project area and complements water quality efforts by the following organizations, as well as the local communities:

- / Big Thompson Watershed Coalition (BTWC)
- Big Thompson Watershed Forum (dissolved); access archive information on the <u>Big Thompson</u> Watershed Forum Archive homepage)
- / City of Loveland
- / Colorado Ag Water Alliance (CAWA)
- / Colorado Department of Public Health and Environment (CDPHE)
- / Colorado Livestock Association
- / Colorado Parks & Wildlife
- / Colorado Rural Water Association
- / Colorado State University (CSU)
- / Colorado Watershed Assembly
- / Colorado Wheat Administrative Committee
- / Ducks Unlimited
- / Estes Park Sanitation District
- / Estes Valley Watershed Coalition
- / FPAC-NRCS, CO
- / Fresh Water Trust

- / Larimer County
- / Little Thompson Watershed Coalition
- / Los Rios Farm
- / Northern Colorado Water Conservancy District
- / Peaks to People Water Fund
- / South Platte Basin Roundtable
- / Thompson School District
- / Town of Berthoud
- / Town of Estes Park
- / Town of Johnston
- / Town of Milliken
- / Trout Unlimited
- / Upper Thompson Sanitation District
- / Weld County
- / Xcel Energy

This watershed-based plan also incorporates the strategies, goals, and objectives of CDPHE's *Colorado's Nonpoint Source Management Plan: 2022* and addresses the U.S. Environmental Protection Agency's (EPA's) nine key elements outlined in the management plan [CDPHE, 2022]. Table 1-1 describes these nine key elements and their corresponding locations within this watershed-based plan [EPA, 2008].

Table 1-1. Sections of the Watershed-Based Plan That Fulfill the U.S. Environmental Protection Agency's Nine Key Elements for Watershed Planning

EPA Element Number	EPA's Nine Key Elements Plan	Applicable Section of Watershed-Based Plan
1	Identify the causes and sources of pollution that need to be controlled to achieve load reductions and other goals (e.g., recreational, economic, ecological) identified in the plan.	5.0 Source Assessment6.0 Priority Areas for Implementation
2	Estimate load reductions expected from the action strategy identified.	6.0 Priority Areas for Implementation7.0 Best Management Practices Load Reductions
3	Describe NPS management measures, including operation/maintenance requirements, and targeted critical areas (i.e., action strategy) needed to achieve identified load reductions.	 Priority Areas for Implementation Best Management Practices Load Reductions Past and Current Best Management Practices Recommended Best Management Practices
4	Estimate technical and financial assistance needed, associated costs, and/or the sources and authorities that will be relied upon to implement the watershed-based plan.	13.0 Technical and Financial Assistance Sources
5	Develop an information and education component that will be used to enhance public understanding of the NPS management measures and encourage their early and continued participation in selecting, designing, and implementing the Action Strategy.	10.0 Information, Education, and Outreach
6	Develop a project schedule.	11.0 Criteria to Assess Progress
7	Describe interim, measurable milestones.	11.0 Criteria to Assess Progress
8	Identify a set of criteria to assess progress/effectiveness in achieving water quality standards or other appropriate end targets.	11.0 Criteria to Assess Progress
9	Develop a monitoring component to evaluate the effectiveness of the implementation efforts over time and measured against the criteria established to document load reductions.	12.0 Monitoring Best Management Practices Effectiveness

This watershed-based plan is not intended to identify which specific BMPs or remediation actions should be included in certain discharge permits, ordinances, stormwater pollution prevention plans (SWPPPs), or conservation plans. Rather, the plan provides an adaptive implementation approach with suggested structural and nonstructural BMPs necessary to address the NPSs of pollutants of concern. For the purposes of this watershed-based plan, BMPs refer to structural and nonstructural actions or measures installed or implemented to reduce the delivery of sediment and nutrients to waterbodies in the project area. Sources of available funding and technical assistance for and associated estimated costs of these BMPs are included to provide landowners, residents, stakeholders, community leaders, and public agencies perspectives on the technical and economic demands of this watershed plan.

Essential to the development of this watershed-based plan is ascertaining and collecting feedback and input from a cross section of stakeholders, including cities, counties, sanitation districts, towns, watershed organizations, and others who will identify, fund, and prioritize projects to implement these practices and BMPs. As a part of this project, two surveys were sent to stakeholders:

items:

- / Survey #1, in 2022, was more general and included questions related to pollutants, issues, and areas of concern.
- / Survey #2, in 2024, was more specific and included questions regarding past and current planning, use of technical and financial assistance, and ideal BMPs.

Survey #1 was distributed to 96 organizations in 2022. The purpose of this survey was to better understand the stakeholders' concerns, issues, resources, and priorities. Building on the conclusions from this survey was the impetus for helping to develop a nine key elements plan.

Survey #2 was distributed to 48 organizations in March 2024 asking them to complete the following

- / Characterize their existing watershed projects and sources of pollution
- / Rank cropland, urban, pastureland, feedlot, and forest BMPs
- / Identify benefits and impacts of existing BMPs
- / Identify existing outreach and education efforts
- / Identify technical and financial assistance needed and utilized

Table 1-2 lists the stakeholders who received and participated in each survey. Results of the survey are found throughout the report and in more detail in Chapter 10.0, Information, Education, and Outreach. Survey responses are an integral part of this project. Survey questions are included in Appendix A.

To help promote the novel regional watershed plan, the project team participated in the annual American Water Resources Association – Colorado Groundwater Association Conference. The team discussed the project objectives, watershed characteristics, nine key elements, and outreach efforts.

Table 1-2. Stakeholder Recipients of Two Surveys With Responses Represented by an "X" (Page 1 of 3)

Organization	Took Survey #1 (2022)	Took Survey #2 (2024)
Boxelder Sanitation District	Х	
BTWC		
Carestream		
CAWA		
CDPHE		
City & County of Broomfield	X	
City of Dacono		
City of Evans	X	X
City of Fort Collins		X
City of Fort Lupton	X	X
City of Greeley	X	X
City of Longmont	X	
City of Loveland	X	X
City of Northglenn		X
Coalition for the Poudre River Watershed		

 Table 1-2. Stakeholder Recipients of Two Surveys With Responses Represented by an "X" (Page 2 of 3)

Organization	Took Survey #1 (2022)	Took Survey #2 (2024)	
Colorado Livestock Association			
Colorado Parks & Wildlife			
Colorado Rural Water Association	Х		
Colorado Watershed Assembly		X	
Colorado Wheat Administrative Committee		X	
CSU	X		
Davies Mobile Home Park		X	
Drala Mountain Center	X		
Ducks Unlimited			
Estes Park Sanitation District	X		
Estes Valley Watershed Coalition	X	X	
Fox Acres Community Services	X		
FPAC-NRCS, CO			
Fresh Water Trust	X		
Galeton Water & Sanitation District	X		
JBS Greeley Beef Plant		Х	
Larimer County		Х	
Left Hand Water District	X		
Little Thompson Watershed Coalition			
Los Rios Farm		Х	
Metro Water Recovery	X		
Northern Colorado Water Conservancy District	X	Х	
Peaks to People Water Fund		Х	
Poudre Heritage Alliance			
Resource Colorado Water & Sanitation Metro District			
RNC Consulting, LLC		X	
South Fort Collins Sanitation District	X	Х	
South Platte Basin Roundtable			
St. Vrain Creek & Boulder Creek Watershed			
St. Vrain Sanitation District	X		
Thompson School District		Х	
Town of Ault	X		
Town of Berthoud	X	X	
Town of Brighton			
Town of Erie	X		
Town of Eaton			
Town of Estes Park		X	

 Table 1-2. Stakeholder Recipients of Two Surveys With Responses Represented by an "X" (Page 3 of 3)

Organization	Took Survey #1 (2022)	Took Survey #2 (2024)
Town of Firestone		
Town of Frederick		
Town of Hudson	Χ	
Town of Johnston	Χ	
Town of Keenesburg		
Town of LaSalle		
Town of Lochbuie	Χ	
Town of Mead	Χ	
Town of Milliken		
Town of Pierce	Χ	
Town of Platteville		Х
Town of Severance	Χ	
Town of Timnath		
Town of Wellington		Х
Town of Windsor	Χ	
Trout Unlimited		
Upper Thompson Sanitation District	Χ	
Water Quality Trading in the Cache la Poudre with Fort Collins		
Weld County	Х	
Weld County Department of Public Health and Environment	Х	
Wright Water Engineers/Cherry Creek Basin Water Quality Authority		X
Xcel Energy		X

2.0 WATERSHED CHARACTERIZATION

The project area for this watershed-based plan is shown in Figure 2-1, which includes the area within Larimer and Weld Counties that intersect the Big and Little Thompson Rivers Watershed (HUC 10190006) in north-central Colorado. The Big Thompson River flows east to its confluence with the South Platte River. Six HUC10 watersheds are in the Big Thompson HUC8: North Fork Big Thompson River (1019000601), Headwaters Big Thompson River (1019000602), Buckhorn Creek (1019000603), Headwaters Little Thompson River (1019000604), Dry Creek-Little Thompson River (1019000605), and Outlet Big Thompson River (1019000606). Although the figures in this document show information within the HUC10 watersheds overlapping Larimer and Weld Counties, the tables summarize only information from the HUC10 watersheds within Larimer and Weld Counties. The total area of the HUCs is 532,350 acres, but within Larimer and Weld Counties, it encompasses only 519,343 acres, according to GIS layer analysis. The watershed is a part of the Colorado-Big Thompson Project that delivers water from Grand Lake through the Adams Tunnel the East Slope distribution system [Hawley and Rodriguez-Jeangros, 2021].

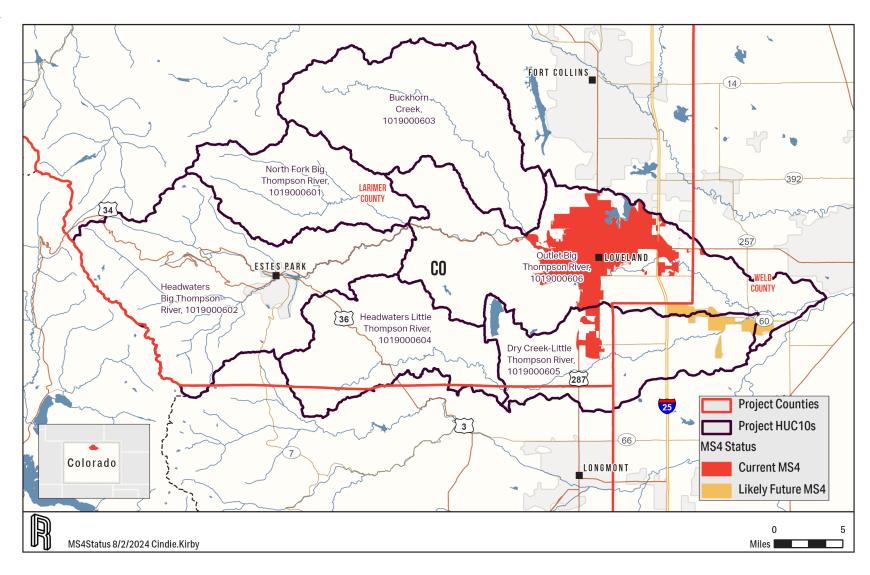


Figure 2-1. Big Thompson River HUC8 Project Area.

A summary of the project area's land cover characteristics was completed using the 2019 National Land Cover Dataset (NLCD). The NLCD is a 16-category, multilayer land cover classification dataset derived from Landsat imagery and ancillary data for consistent land cover data for all 50 states. The land cover is depicted in Figure 2-2 [Multi-Resolution Land Characteristics Consortium, 2019]. In the project area (including the Municipal Separate Storm Sewer Systems [MS4s]), approximately 45 percent of the area is forest; 20 percent is scrub/shrub; 12 percent is cultivated crops; 5 percent is developed; and barren, pasture/hay, wetlands, and open water/ice each make up 2 percent or less. The City of Loveland, Colorado, is the largest urban area in the watershed, with a 2020 Census population of 79,738 and an area of approximately 36 square miles (mi²) [U.S. Census Bureau, 2020]. Other populated areas in the watershed include the Town of Estes Park (6,490 people, 6.9 mi², growing at 1.1 percent annually), the Town of Berthoud (9,482 people, 13.0 mi², growing at 8.6 percent annually), and the Town of Johnstown (16,020 people, 13.8 mi², growing at 6.2 percent annually). The watershed transitions from forest within higher elevations in the west to scrub/shrub/herbaceous within the mid-range elevations and crops within the lower elevations in the east. The City of Loveland is located at the transition between the scrub/shrub/herbaceous and cropland areas. Most of the land is privately owned (90 percent) with 9 percent being federally owned and other ownership categories making up only 1 percent. This was calculated using a combination of public parcels [Colorado Geospatial Portal, 2024] and from the Environmental Systems Research Institute, Inc.'s (ESRI's) data portal for USA Federal Lands [ESRI, 2014].

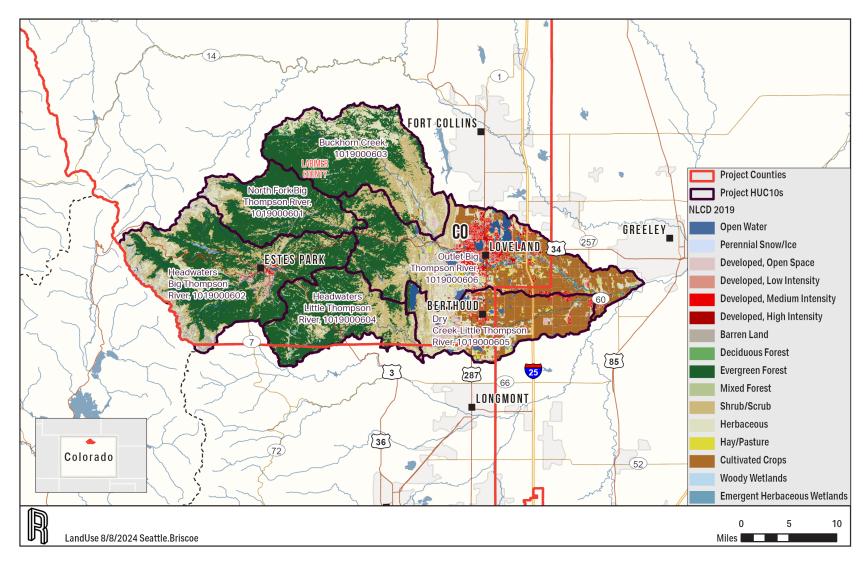


Figure 2-2. National Land Cover Dataset 2019 Land Use.

As indicated in Figure 2-3, precipitation varies throughout the project area. Typical annual precipitation is between 51 inches in the upper, western part of the watershed to 13 inches per year in the lower, eastern portion [PRISM Climate Group, 2024]. Maximum monthly average precipitation generally occurs in the summer months; however, the largest flows typically occur from winter snowmelt in the spring. According to Hawley and Rodriguez-Jeangros [2021], "flow rates in the upper watershed follow a seasonal snowmelt hydrograph pattern with peaks between May and June and the falling limb typically extending into September. The lowest flows occur in the winter months. Below the Town of Lake Estes, the snowmelt hydrograph peaks are still apparent, but are diminished in some years by Colorado-Big Thompson project diversions to the Olympus Tunnel." Hawley and Rodriguez-Jeangros [2021] also notes a sharp drop in annual flow volumes at the top of the lower watershed, which is from irrigation and municipal water diversions, and that winter flows tend to be higher at the downstream end of the watershed because of groundwater and wastewater effluent. During a typical year, approximately 1,225,000 acre-feet are used for irrigation in the South Platte Basin [Colorado Water Plan, 2015]. In 2013, extensive flooding along the Front Range caused significant damage. The flood led to restoration work and continues to cause sediment movement.

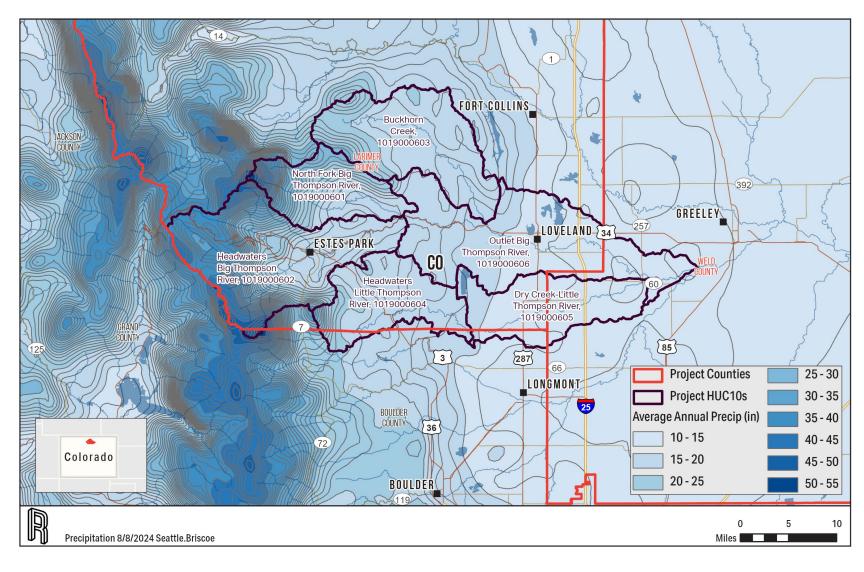


Figure 2-3. Average Annual Precipitation (1981 to 2010).

The bedrock geology of the project area is displayed in Figure 2-4 [Horton et al., 2017]. In the Big Thompson River HUC8, the mountainous portions consist mostly of intrusive igneous and undifferentiated metamorphic material, and the transitional area consists mostly of undifferentiated sedimentary and clastic sedimentary material. The lower, agricultural area consists of clastic sedimentary and undifferentiated unconsolidated material. The South Platte River originates in the mountains of central Colorado at the Continental Divide and flows approximately 450 miles northeast across the Great Plains to its confluence with the North Platte River at North Platte, Nebraska. The basin includes two physiographic provinces: the Front Range Section of the Southern Rocky Mountain Province and the Colorado Piedmont Section of the Great Plains Province [USGS Colorado Water Science Center, 2000].

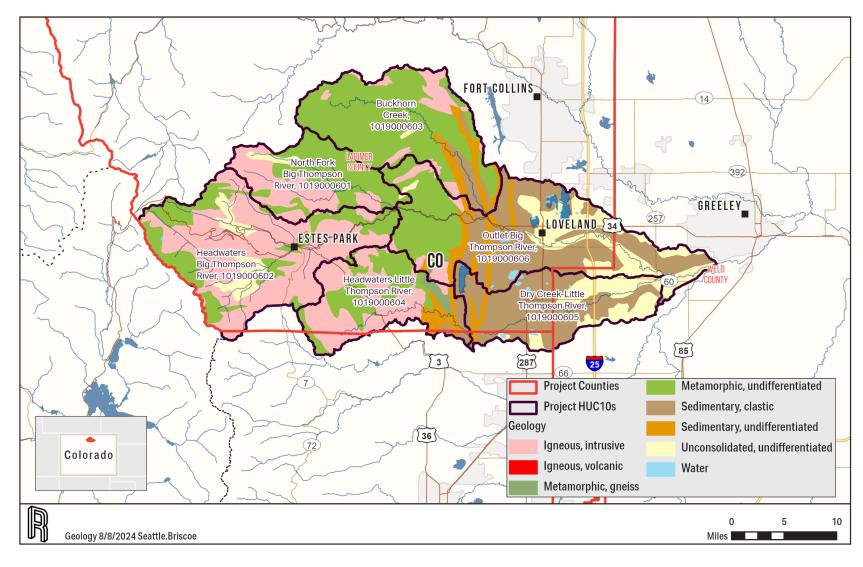


Figure 2-4. Geology.

Hydrologic soil groups can significantly impact the amount of water that infiltrates or runs off during precipitation events. Type A soils are generally sand or sandy loams with high infiltration rates; Type B soils are silt loam or loam soils with moderate rates; Type C soils are generally sandy, clay loams with low infiltration rates; and Type D soils are heavy soils; clay loams; and silty, clay soils with low infiltration rates. The project area comprises 10 percent A, 26 percent B, 20 percent C, and 44 percent D soil types. Figure 2-5 shows the distribution of hydrologic soil groups in the watershed using the Soil Survey Geographic Database (SSURGO) [NRCS, 2024a].

Survey #2 inquired about what concerns stakeholders had with the watershed, including issues related to wastewater discharges and MS4 areas. Specifically relating to the Big Thompson River HUC8, a stakeholder mentioned concerns for both point sources and NPSs. The Los Rios Farm, LLC stated its concerns are regarding the Town of Berthoud's treatment plants as well as ditches that run from municipal areas and oil locations near waterbodies.

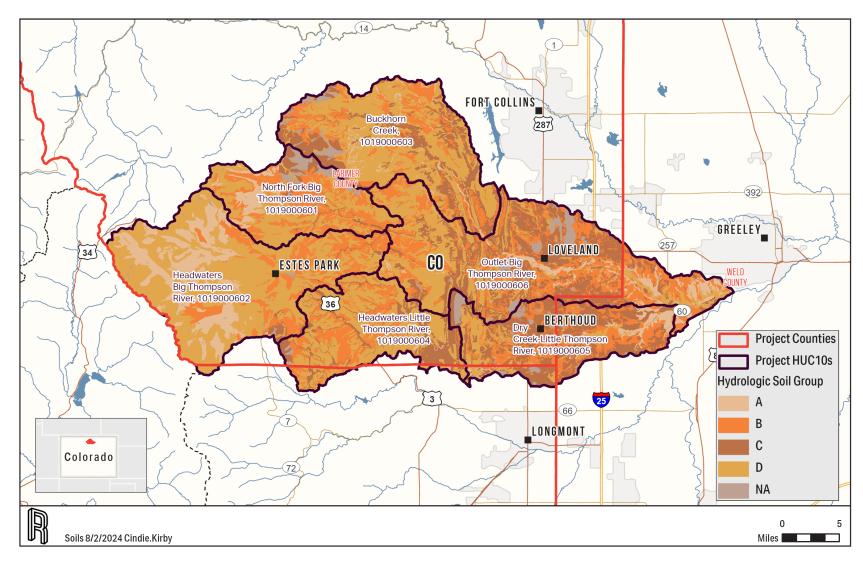


Figure 2-5. Hydrologic Soil Group.

3.0 EXISTING WATERSHED PLANS AND PROJECTS

Many conservation accomplishments have been achieved within the project area, which can be attributed to the local planning and implementation efforts of the community, state, and federal partners. Projects outlined on the BTWC website are listed in Table 3-1. More information about work completed in the Big Thompson River Watershed is available on the BTWC All BTWC Projects webpage [BTWC, 2024].

Table 3-1. Watershed Planning and Major Projects in the Big Thompson River HUC8

Project Type	Name	Year Completed
Planning	Big Thompson River Envisioning Project	2022
Planning	Big Thompson River Restoration Master Plan	2015
Planning	Big Thompson River Corridor Master Plan	2017
River	Rossum to Wilson and Ditch Improvement	2019
River	Wild Natural Area and Neighbors Flood Recovery	2019
River	Sylvan Dale Flood Recovery	2013
River	Jasper Lake Flood Recovery	2017
River	Cedar Cove Flood Recovery	2017
River	Moodie Street Flood Recovery	2018
River	Waltonia and Mountain Shadows Flood Recovery	2018
River	North Fork Flood Recovery	2017
River	Glen Haven Flood Recovery	2017
River	Big Thompson Canyon Access Pier	2019
River	Blue Mountain River Restoration	2019
River	Green Bridge/Berthoud River Restoration	2018
River	Namaqua Big Thompson River Restoration	2019
River	Storm Mountain Forestry and Community Engagement	2020
Forest	Waltonia Wildfire Mitigation	In Progress
Forest	Glen Haven Forest Restoration	In Progress
Forest	Sylvan Dale Forest Restoration	In Progress
Forest	Round Mountain Forest Health Demonstration	In Progress
Wildfire	Wildfire Ready Watershed Action Plan	In Progress
Wildfire	Cameron Peak River Reforestation	2023
Wildfire	Cameron Peak Fire Hillslope Stabilization	2023
Wildfire	Cameron Peak Fire Instream Mitigation	2023

Big Thompson River planning projects can be found on the following websites:

- I Big Thompson River Envisioning Project
- / Big Thompson River Restoration Master Plan
- I Big Thomspon River Corridor Master Plan
- I Big Thompson Wildfire Ready Action Plan

Numerous conservation measures have been completed and are currently being implemented within the project area. These projects have been made possible through CDPHE with EPA's Section 319 NPS implementation grants and CDPHE grants. Previous conservation efforts have occurred in the project area, and each project helped improve water quality and make progress toward restoring and protecting local waterbodies. Tables 3-2 and 3-3 discuss these implementations within the project area [EPA, 2024a].

 Table 3-2. Nonpoint Source Grants Implemented in the Big Thompson River HUC8

Conservation Projects	Grant Number	Completio n Year	Pollution Category	Section 319 Expenditures (\$)	Total Expenditures (\$)	Project Accomplishments
Big Thompson Watershed Management Plan	99818604	2005	All Sources; Urban Runoff/Stormwater	25,000	66,660	This project includes Phase I of a comprehensive Watershed Management Plan and will involve prioritizing water quality issues with a wide variety of stakeholders. Source Water Assessment and Protection and monitoring results will be reviewed to determine baseline conditions, contaminant sources, and data needs.
Nonpoint Source Pollution Project – Filter Strip Implementation Project and Little Thompson Watershed Plan	99818618	2023	Agriculture	300,000	542,578	The project will implement a live planted filter strip consisting of irrigated grass and legumes that can act as a means to filter out nutrients, sediment, and pathogens on return flow water into the Little Thompson and St. Vrain watersheds. The project will also determine the effectiveness of the filter strip.
Lateral Ditch Piping	99818618	2023	Agriculture	30,000	72,826	This project serves to reduce water quality issues by installing NPS BMPs by piping irrigation water from the headgate to the sprinkler system, which will allow the elimination of ditch maintenance and chemical contamination of the water as well as sediment reduction. Additional benefits will include salinity and nutrient contributions to the state waters. The project will be located in the Little Thompson River Basin.
Agricultural BMP Implementation and Evaluation Project and Little Thompson Watershed Plan	99818618	2023	Agriculture	271,514	471,114	This project involves implementing and investigating the effectiveness of NPS BMP to address water quality issues related to NPS pollution specifically associated with selenium and <i>E. coli.</i>
Water Quality, Soil Health, and Regenerative Agriculture	99818620	2024	Agriculture	308,181	633,668	This project is improving water quality through the implementation of agricultural BMPs in northern Colorado. BMPs may include strip buffer, conservation tillage, advanced nutrient management, and irrigation management.

 Table 3-3. Other Nonpoint Source Projects (South Platte and/or Statewide)

Project Title	Project Sponsor	Basin	NPS Funding (\$)	Match on 09/30/2022 (\$)	Status on 09/30/2022 (MM/YYYY)
Little Thompson and St. Vrain Watershed Resilience Initiative	CSU	South Platte	294,940	61,367	Expected Completion 03/2023
Water Quality, Soil Health and Regenerative Agriculture: A Nexus for Sustainability	CSU	South Platte	306,518	68,010	Expected Completion 06/2024
Implementing Agricultural BMPs in a Colorado Soil Health Pilot Program	Colorado Department of Agriculture	Various	34,4894	286,427	Expected Completion 06/2025
Brush Wetland Demonstration Project	Ducks Unlimited	South Platte	80,000	18,167	Expected Completion 06/2025
Nutrient Management on Irrigated Pastures	CAWA	Various	266,355	95,912	Expected Completion 01/2026

4.0 STANDARDS AND IMPAIRMENTS

Impairment locations throughout the project area are shown in Figure 4-1. Impaired stream segments and lakes in the project area are shown in Table 4-1, with impairments including heavy metals like copper, iron, manganese, and zinc and other water quality parameters such as pH, temperature, *E. coli*, and nitrate. Mercury and selenium are measured in fish tissue, as a standard, and in water quality samples. Individual maps and box plots of each impaired parameter are included in Appendices B and C, respectively.

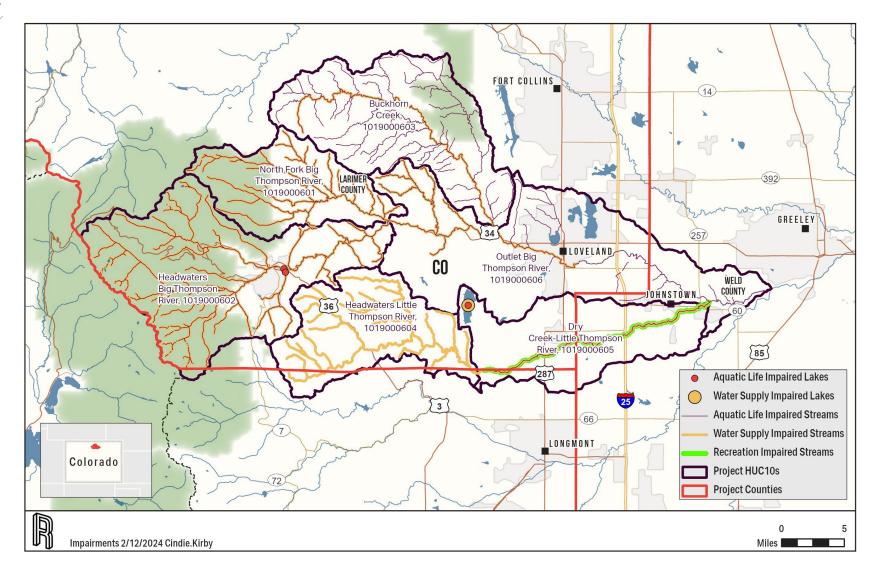


Figure 4-1. Impaired Waterbodies.

RSI-3425 DRAFT

 Table 4-1. Clean Water Act Section 303(d)-Impaired Waterbodies Summary (Page 1 of 2)

Impairment I.D./ HUC10s	Aquatic Life Tier/ Recreation Tier	Description	Aquatic Life Impairments	Recreation Impairment	Water Supply Impairment
COSPBT01_B/ 1019000601 and 101000602	C1/E	Mainstem of the Big Thompson River, including all tributaries and wetlands, within Rocky Mountain National Park, except for specific listings in Segment 2	Copper (D), Mercury (T), Zinc (D)	N/A	Arsenic (T)
COSPBT02_A/ 1019000601 and 1019000602 and 1019000606	C1/E	Mainstem of the Big Thompson River, including all tributaries and wetlands from Upper Thompson Sanitation District discharge to Cedar Creek, except for the specific listing in Segment 7; mainstem of Black Canyon Creek and Glacier Creek; excluding Fish Creek below Mary's Lake	Copper (D), Mercury (T)	N/A	Arsenic (T)
COSPBT02_B/ 1019000602	C1/E	Fish Creek below Mary's Lake	Macroinvertebrates, pH	N/A	Arsenic (T), Nitrate
COSPBT02_C/ 1019000602	C1/E	Mainstem of the Big Thompson River, including all tributaries and wetlands, from Rocky Mountain National Park to Upper Thompson Sanitation District discharge	Macroinvertebrates, Copper (D), Mercury (T)	N/A	Arsenic (T), Nitrate
COSPBT02_D/ 1019000606	C1/E	Mainstem of the Big Thompson River, including all tributaries and wetlands, from Cedar Creek to Home Supply Canal	Copper (D), Iron (T), Mercury (T), Temperature	N/A	Arsenic (T)
COSPBT02_E/ 1019000601	C1/E	Mainstem of the North Fork of the Big Thompson River from the boundary of Rocky Mountain National Park to the confluence with the Big Thompson River	Copper (D), Mercury (T)	N/A	Arsenic (T)
COSPBT02_F/ 1019000606	C2/E	Mainstem of the Big Thompson River from the Home Supply Canal diversion (40.397884, -105.106482) to the Greeley-Loveland Canal diversion	Copper (D)	N/A	Arsenic (T)
COSPBT02_G/ 1019000606	C2/E	Mainstem of the Big Thompson River from Big Barnes Ditch (40.406, -105.143) to the Greeley-Loveland Canal Diversion (40.397884, -105.106482)	Selenium (D)	N/A	Manganese (D)
COSPBT03_B/ 1019000606	W1/EN	Mainstem of the Big Thompson River from the Greeley-Loveland Canal diversion to County Road 11H	Mercury (T), Selenium (D),	N/A	Arsenic (T), Manganese (D)
COSPBT04_A/ 1019000606	W2/E	Mainstem of the Big Thompson River from County Road 11H to I-25	Mercury	N/A	N/A

 Table 4-1. Clean Water Act Section 303(d)-Impaired Waterbodies Summary (Page 2 of 2)

Impairment I.D./ HUC10s	Aquatic Life Tier/ Recreation Tier	Description	Aquatic Life Impairments	Recreation Impairment	Water Supply Impairment
COSPBT05_A/ 1019000606	W2/NP	Mainstem of The Big Thompson River from I-25 to the confluence with the South Platte River	Mercury (T), Selenium (D)	N/A	N/A
COSPBT06_A/ 1019000603 and 1019000606	W2/E	All tributaries to the Big Thompson River, including all wetlands, from the Home Supply Canal diversion to the confluence with the South Platte River; excluding Dry Creek	Selenium (D)	N/A	N/A
COSPBT07_A/ 1019000603	C1/E	Mainstem of Buckhorn Creek from the source to the confluence with the Big Thompson River	Mercury (T)	N/A	Arsenic (T)
COSPBT08_A/ 1019000605	C1/E	Mainstem of the Little Thompson River, including all tributaries and wetlands, from the St. Vrain Supply Canal to the Culver Ditch diversion (40.253242, -105.200029)	N/A	N/A	Arsenic (T)
COSPBT08_B/ 1019000604	C1/E	Mainstem of the Little Thompson River, including all tributaries and wetlands, from the source to the St. Vrain Supply Canal	N/A	N/A	Arsenic (T)
COSPBT09_A/ 1019000605	W2/E	Mainstem of the Little Thompson River from the Culver Ditch diversion (40.259242, -105.200029) to the confluence with the Big Thompson River	Selenium (D)	E. coli	Manganese (D)
COSPCP14_A/ HUC10	C1/E	Horsetooth Reservoir	Fish Mercury	N/A	Arsenic (T)
COSPCP20_B/ HUC10	C2/E	Seaman Reservoir	Dissolved Oxygen	N/A	Arsenic (T)

D = dissolved

T = total

In Survey #1, local stakeholders noted their primary parameters of concern. Each parameter occurrence was counted, and the four parameters that appeared the most were nitrogen, phosphorus, total suspended solids (TSS), and *E. coli*. Others that showed up less than the most predominant parameters included temperature, emerging contaminants, metals, and per- and polyfluoroalkyl substances (PFAS). Emerging contaminants are the different types of chemicals (e.g., medication, personal care products, home cleaning products, lawn care products, and agricultural products, such as insecticides and herbicides) that end up in waterbodies but are not generally treated in wastewater facilities. PFAS and emerging contaminants of concern are not included in this report. Some emerging contaminants are treated by drinking water and/or wastewater facilities, but these chemicals are not well regulated or understood. A new EPA limit for PFAS of 4 parts per trillion was released in 2024 [EPA, 2024b].

Water quality standards for parameters of concern are based on beneficial-use tiers. For more information on these standards and tiers, visit the CDPHE's <u>Water Quality Control Commission's</u> 5 Codes of Colorado Regulation (CCR) 1002-31 website, last updated June 14, 2023. Access the CDPHE's <u>Water Quality Control Commission Regulation No. 38 website</u>, last updated April 30, 2024, for information on classifications and numeric standards for South Platte River Basin, Laramie River Basin, Republican River Basin, and Smoky Hill River Basin (5 CCR 1002-38).

The beneficial-use tiers for aquatic life, recreation, and domestic water supply are listed as follows:

- / Aquatic Life
 - » C1 Class 1 Cold Water
 - » C2 Class 2 Cold Water
 - » W1 Class 1 Warm Water
 - » W2 Class 2 Warm Water
- / Recreation
 - » E Existing Primary Contact Use (since November 28, 1975)
 - » P Potential Primary Contact Use
 - » N Not Primary Contact Use
 - » U Undetermined Use
- / Domestic Water Supply
 - » Direct Use Water Supply Lakes and Reservoirs

Current loads were determined for *E. coli*, dissolved selenium, total nitrogen, and total phosphorus using flow and water quality monitoring data collected along the mainstem of the most downstream HUC10 of the Big and Little Thompson project area (1019000606). The U.S. Geological Survey (USGS) site used for flow was USGS-06741510, which had data available from 1979 through 2024. The average annual flow was calculated using flow from 1990 through 2024 to be approximately 61.6 cubic feet per second (cfs). Numerous water quality sites were along the mainstem in the HUC10, and all available *E. coli*, selenium, total nitrogen, and total phosphorus data were used. The geometric mean from all *E. coli* data collected from 1990 through 2024 was used to represent the *E. coli* concentration; the 85th

percentile from all dissolved selenium from 1990 through 2024 was used to represent the current selenium concentration; and for both phosphorus and nitrogen, the annual median was averaged for all data from 1990 through 2024 to represent the current concentrations. Current loads were then calculated as the product of flow, concentration, and a conversion factor for each. Needed loads based on water quality standards were also calculated using the product of the same average annual flow, each water quality standard, and a conversion factor. The *E. coli* water quality standard was 126 most probable number (mpn) per 100 milliliters (mL), the selenium standard was 4.6 micrograms per liter (µg/L), the nitrogen standard was 2.01 milligrams per liter (mg/L), and the phosphorus standard was 0.17 mg/L. Current and needed flows, concentrations, and loads are shown in Table 4-2, as well as the load reduction needed at in the HUC10. At this location, reductions are needed to reach goal loads for dissolved selenium and total phosphorus. As flow and concentration data are collected at this location, they can be incorporated into the load estimations.

Table 4-2. Flows, Current Loads, Goal Loads, and Reductions to Reach Goals in Most Downstream HUC10 of the Project Area

Flow	Average Annual Flow (cfs)	61.6
Current	E. coli Geomean (org/100 mL)	40.1
	Dissolved Selenium (85th Percentile)	5.4
Concentrations	Average of Median Annual Nitrogen (mg/L)	1.4
	Average of Median Annual Phosphorus (mg/L)	0.2
	E. coli (billion org/day)	60.4
Overset Leads	Selenium (lb/day)	1.8
Current Loads	Nitrogen (lb/day)	472.2
	Phosphorus (lb/day)	61.4
	E. coli (billion org/day)	189.9
0 11 1	Selenium (lb/day)	1.5
Goal Loads	Nitrogen (lb/day)	667.8
	Phosphorus (lb/day)	56.5
	E. coli	0%
Reductions to	Selenium	15%
Achieve Goal Loads	Nitrogen	0%
	Phosphorus	8%

cfs = cubic feet per second

lb/day = pounds per day

mg/L = milligrams per liter

mL = milliliters

5.0 SOURCE ASSESSMENT

Only NPS pollutants are addressed in this report. Point sources and areas with MS4s are addressed in the *208 Areawide Water Quality Management Plan, 2022 Update* [NFRWQPA, 2022]. Outside of MS4-permitted areas, NPSs of nutrients are generally related to runoff from cropland, pastureland, developed land, and other similar lands. NPSs of sediment consist of sediment contributions through wash off, as well as bed and bank erosion during high flows. NPSs of *E. coli* are typically from livestock, pets, wildlife, and human sources that can occur in agricultural and developed areas. NPSs of heavy metals vary by metal, but are often from abandoned mine lands (AMLs) or runoff from irrigated agricultural lands. Sometimes sources are from natural causes. Natural causes are the physical, chemical, or biological conditions that would exist in a waterbody in the absence of measurable impacts from human activity or influence. More information about the sources of each pollutant are described in this section.

5.1 NUTRIENTS AND SEDIMENT

The EPA's Pollutant Load Estimation Tool (PLET) was used to estimate nutrient and sediment loads from different land uses by HUC10 and later to evaluate load reductions that would result from the implementation of various BMPs [EPA, 2022].

For the Big Thompson River HUC8 in PLET, all six HUC10 watersheds were represented: North Fork Big Thompson River (1019000601), Headwaters Big Thompson River (1019000602), Buckhorn Creek (1019000603), Headwaters Little Thompson River (1019000604), Dry Creek-Little Thompson River (1019000605), and Outlet Big Thompson River (1019000606). The following inputs to the PLET model were included for each HUC10:

- / Watershed land-use areas (acres) [Multi-Resolution Land Characteristics Consortium, 2019]
 - » Urban (non-MS4)
 - » Cropland
 - » Pastureland
 - » Forest
 - » Feedlots
 - » Other (all other land uses)
- / Prominent hydrologic soil group (A-D) [NRCS, 2024a]
- / Average annual rainfall (inches) [EPA, 2022]
- / Rain days/year [EPA, 2022]
- / Number of agricultural animals [EPA, 2022]
 - » Beef cattle
 - » Dairy cattle
 - » Swine
 - » Sheep

- » Horse
- » Chicken
- » Turkey
- » Duck
- / Number of septic systems [Larimer County, 2024; Fischer, 2023]
- / Population per septic system [Thomas, 2024]
- / Septic rate failure [EPA, 2022]
- / Urban land-use distribution [Multi-Resolution Land Characteristics Consortium, 2019]
- Irrigated cropland [Colorado's Decision Support Systems, 2024]
- / Water depth per irrigation (inches) [EPA, 2022]
- / Irrigation days/year [EPA, 2022]

Sediment erosion can be estimated in PLET; however, gullies and streambank erosion were not included because of a lack of data. Wildlife density (animals per square mile) was also not included because of a lack of data and because wildlife is considered a natural source.

Source assessment modeling results for the six HUC10 watersheds are summarized using the following categories: urban areas (excluding permitted MS4 areas), cropland, pastureland, forest (including scrub/shrub), feedlots, and a combination of all other land uses. The other land uses consist of barren, herbaceous, and wetlands, which typically are not the highest contributors per acre; therefore, BMP planning does not generally focus on these land uses even though they can make up a fairly large portion of the area. Because this is a NPS plan, permitted MS4s, which have limits to meet, are exempt from inclusion in this plan. The permitted MS4 in the project area not included is the City of Loveland, Colorado. MS4 areas were developed using a combination of the MS4 layer from ERAMS [Catena Analytics, 2024] (developed with the 2010 Census urban areas), the 2020 urban areas [U.S. Census Bureau, 2020], and a layer sent from the Town of Timnath [Smith, 2024]. The excluded area used to represent the City of Loveland was approximately 47 mi², primarily located in the Outlet Big Thompson River HUC10. Table 5-1 shows the percentage of each land-use source per HUC10 (in Larimer and Weld Counties only). The only source not associated with an area is septic systems. The quantified sources of nitrogen, phosphorus, and sediment are listed in Tables 5-2, 5-3, and 5-4 in order of the HUC10 watersheds. The upper five watersheds (North Fork Big Thompson River, Headwaters Thompson River, Buckhorn Creek, Headwaters Little Thompson River, and Outlet Big Thompson River) are dominated by forest, and the lowest watershed (Dry Creek-Little Thompson River) is dominated by croplands.

The primary land cover for the upper five watersheds is forest, which dominates the source loads for nutrients and sediment. The only exceptions are the Headwaters Big Thompson River and Outlet Big Thompson River Watersheds. In the former, urban non-MS4 land dominates the nitrogen and sediment sources, which is reasonable because of the substantial areas of developed land in the watershed. In the latter, cropland dominates all nutrient and sediment sources, which is reasonable because the many waterbodies primarily drain agricultural land in the watershed. In the lowest watershed, Dry Creek-Little Thompson River, the primary land cover is cropland, which dominates the source loads for nutrients and sediment.

Table 5-1. Land Cover

HUC10	Description	Area (mi²)	Urban Non-MS4 (%)	Cropland (%)	Pastureland (%)	Forest (%)	Feedlots (%)	Other Land Uses (%)
1019000601	North Fork Big Thompson River	85	2	0	0	92	<1	7
1019000602	Headwaters Big Thompson River	184	7	0	<1	80	<1	12
1019000603	Buckhorn Creek	145	2	<1	<1	78	<1	19
1019000604	Headwaters Little Thompson River	91	1	0	<1	92	<1	7
1019000605	Dry Creek- Little Thompson River	86	14	52	3	8	<1	22
1019000606	Outlet Big Thompson River	161	9	28	3	43	<1	17

Table 5-2. Nitrogen Sources

HUC10	Description	Area (mi²)	Urban Non-MS4 (%)	Cropland (%)	Pastureland (%)	Forest (%)	Feedlots (%)	Other Land Uses (%)	Septic (%)
1019000601	North Fork Big Thompson River	85	20	0	0	62	11	5	1
1019000602	Headwaters Big Thompson River	184	56	0	1	30	7	5	2
1019000603	Buckhorn Creek	145	15	10	3	46	9	13	4
1019000604	Headwaters Little Thompson River	91	11	0	2	66	9	6	7
1019000605	Dry Creek-Little Thompson River	86	14	73	4	<1	6	1	1
1019000606	Outlet Big Thompson River	161	18	62	5	3	8	1	3

Table 5-3. Phosphorus Sources

HUC10	Description	Area (mi ²)	Urban Non-MS4 (%)	Cropland (%)	Pastureland (%)	Forest (%)	Feedlots (%)	Other Land Uses (%)	Septic (%)
1019000601	North Fork Big Thompson River	85	8	0	0	79	6	6	1
1019000602	Headwaters Big Thompson River	184	31	0	<1	53	5	9	2
1019000603	Buckhorn Creek	145	6	5	1	62	5	17	4
1019000604	Headwaters Little Thompson River	91	4	0	<1	78	4	7	6
1019000605	Dry Creek-Little Thompson River	86	10	78	2	1	5	2	3
1019000606	Outlet Big Thompson River	161	13	66	2	5	7	3	5

Table 5-4. Sediment Sources

HUC10	Description	Area (mi²)	Urban Non-MS4 (%)	Cropland (%)	Pastureland (%)	Forest (%)	Feedlots (%)	Other Land Uses (%)	Septic (%)
1019000601	North Fork Big Thompson River	85	26	0	0	60	0	14	0
1019000602	Headwaters Big Thompson River	184	66	0	<1	22	0	11	0
1019000603	Buckhorn Creek	145	20	11	2	37	0	31	0
1019000604	Headwaters Little Thompson River	91	14	0	1	68	0	17	0
1019000605	Dry Creek-Little Thompson River	86	7	90	1	<1	0	2	0
1019000606	Outlet Big Thompson River	161	8	86	2	2	0	2	0

A less obvious contributor of nutrients and sediment to waterbodies is wildland fires. Wildland fires significantly reduce well-established root systems in areas impacted and, as a result, soil erosion is much more likely during precipitation events, carrying nutrients with it. The Big Thompson River Watershed has already experienced post-wildfire flooding, debris flows, and associated economic impacts from two of the largest fires in Colorado: East Troublesome to the west and Cameron Peak to the north. Table 5-5 provides the total number of fire acres for each year past 2000 where any existed per HUC10 [National Interagency Fire Center, 2024]. The physical location of the watershed within a wildfire-prone area of Colorado and its past encounters with natural calamities make having a plan of action for any future wildfire risks imperative. A Big Thompson Wildfire Ready Action Plan is currently being prepared and will be completed by 2025 and made available on the Peaks to People Water Fund's website.

Table 5-5. Total Fire Acres per HUC10 per Year (2000-2021)

HUC10	1019000601	1019000602	1019000603	1019000604	1019000605	1019000606
2000	2,586		6,951			10,271
2002				8,705		
2003		80				10
2004		121				
2005		86				
2006		223				
2008		572	88			
2009	44					
2010	2,171	320				930
2011			5,878			
2012	14	6,832	41,171			
2014		30				
2016		196	189			0
2017		28				
2020	13,761	4,898	45,917	1		5,599
2021		127		20		4

Two locations are impaired for nitrates, a form of nitrogen, in HUC10 1019000602: COSPBT02_B and COSPBT02_C. Nitrates are a sensitive parameter for water supply because they cause cyanosis (i.e., blue baby syndrome), which causes skin to appear blue because of poorly oxygenated blood and can cause abnormalities in the heart, lungs, and blood [WebMD, 2024]. Nitrates can enter surface waters from animal manure, nitrogen fertilizers, wastewater, and decomposed plant residues and organic matter [University of Missouri Extension, 2024]. No other nutrient- or sediment-impaired waterbodies occur in the Big Thompson River HUC8, but nutrients and sediment were identified as priority parameters of concern.

Atmospheric deposition is also a source of nutrients. EPA's Clean Air Status and Trends Network (CASTNET) and the National Atmospheric Deposition Program (NADP) monitor nitrogen deposition (ammonia and nitrate) at locations throughout the United States. The SPARROW model published by the USGS estimated that in the Big Thompson River Watershed, more than 115,000 pounds of nitrogen were delivered to the stream from atmospheric deposition [USGS, 2019]. Some practices can help reduce nutrients in atmospheric deposition; however, these practices are not a focus in this plan because their impacts are less local than other BMPs.

5.2 E. COLI

Bacteria comes from the intestines of humans and warm-blooded animals. NPSs of bacteria consist primarily of waste that is transported through wash off from cropland, pastureland, and developed land, as well as septic systems and direct defecation from livestock and wildlife. For the purposes of this

project, bacteria from wildlife are assumed to be a natural background source and are not included in the assessment.

E. coli from human and animal waste are dispersed throughout the landscape, spread by humans, and/or treated in facilities. Once *E. coli* are in the environment, their accumulation on land and delivery to the stream are affected by die-off and decay, surface imperviousness, detention time, ultraviolet exposure, and other mechanisms. Quantifying *E. coli* sources using PLET is not recommended [Tetra Tech, Inc., 2022], so an assessment of bacteria production within the watershed was completed per HUC10. This assessment included humans (Wastewater Treatment Plants [WWTPs] and Onsite Wastewater Treatment Systems [OWTSs]), pets (dogs and cats), and livestock (cattle, horses, poultry, sheep, and hogs); however, wildlife was not included because wildlife was assumed to be a natural source of bacteria. Publicly owned WWTPs are highly regulated and are not a significant source of *E. coli*. In some cases, WWTPs even provide dilution from other sources. OWTS contributions are largely dependent on soil and geology in an area, as well as their proximity to a waterbody. Additionally, point sources are not a focus of this study; therefore, WWTP estimates were added primarily as a comparison to the production of bacteria sent to an OWTS.

Livestock contribute *E. coli* loads directly by defecating in streams and indirectly by defecating on cropland or pastures where *E. coli* can wash off during precipitation events, snowmelt, or irrigation. Spreading livestock manure on cropland or pasture also contributes *E. coli* to waterbodies. The livestock in the project area mainly consists of cattle, poultry, hogs, horses, sheep, and goats, which are grazed and/or confined, and manure is spread on crops and pastures.

Pet waste is another potential source of *E. coli*. Pet waste is often left in yards, in parks, and along trails, and can be carried with stormwater to local storm drains and waterbodies.

Natural background sources are inputs that would be expected under natural, undisturbed conditions and include *E. coli* loading from wildlife in the area. Wildlife (e.g., waterfowl and large-game species) also contribute *E. coli* loads directly by defecating while wading or swimming in a stream and indirectly by defecating on lands that produce watershed runoff during precipitation events.

A GIS-based assessment was completed within each impaired drainage area to estimate livestock, wildlife, human, and pet populations. Animal populations were multiplied by average excretion rates from scientific literature to estimate the amount of *E. coli* produced by each source type in each HUC10 watershed. The reported literature values for fecal coliform excretion were converted to *E. coli* excretion by using a fecal coliform to *E. coli* ratio of 200:126 mpn per 100 mL. The loads produced by humans are usually treated by WWTPs and OWTSs.

Annual excretion estimates for livestock (excluding hogs) and wildlife were obtained from "BSLC: A Tool for Bacteria Source Characterization for Watershed Management" [Zeckoski et al., 2005], and bacteria estimates for humans and hogs were obtained from *Wastewater Engineering: Treatment, Disposal, and Reuse* [Metcalf and Eddy, 1991]. Annual excretion rates for dogs and cats were sourced from *Identification and Evaluation of Nutrient and Bacterial Loadings to Maquoit Bay, New Brunswick and Freeport, Maine* [Horsley and Witten, Inc., 1996]. Literature values for bacteria excretion rates are estimates and do not represent all sources and dynamics of bacteria in a natural system. Table 5-6

provides the literature rates of *E. coli* (converted from fecal coliform) produced by each animal per day, as well as the respective sources.

Table 5-6. *E. coli* Production Rates From Literature Sources

Category	Subcategory	E. coli Production Rate (cfu/head/day)	Source
Humans	WWTP	1,260,000,000	Metcalf and Eddy, 1991
Humans	OWTS	1,260,000,000	Metcalf and Eddy, 1991
Pets	Cats	3,150,000,000	Horsley and Witten, Inc., 1996
Pets	Dogs	3,150,000,000	Horsley and Witten, Inc., 1996
Livestock	Cattle	20,790,000,000	Zeckoski et al., 2005
Livestock	Horses	26,460,000,000	Zeckoski et al., 2005
Livestock	Poultry	58,590,000	Zeckoski et al., 2005
Livestock	Sheep	7,560,000,000	Zeckoski et al., 2005
Livestock	Goats	17,640,000,000	Zeckoski et al., 2005
Livestock	Hogs	5,607,000,000	Metcalf and Eddy, 1991
Wildlife	Deer	220,500,000	Zeckoski et al., 2005
Wildlife	Ducks	1,512,000,000	Zeckoski et al., 2005
Wildlife	Geese	504,000,000	Zeckoski et al., 2005

cfu/head/day = colony-forming units per head per day

Livestock numbers were obtained from the PLET database by HUC12 and aggregated up to the HUC10 level. Livestock counts available in PLET included cattle, horses, poultry, sheep, and hogs. PLET animal data are from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service, for which county animal data are summarized at the HUC12 level based on the pastureland area weighted ratio [EPA, 2022].

Hogs and poultry are typically kept in a total confinement facility, with their manure collected in a liquid manure storage area and later spread and/or incorporated on or into agricultural land. Grazed animals can also be kept in sheltered areas but are more likely to be pastured or have access to waterbodies than hogs and poultry. Manure that has been incorporated or spread into or on agricultural fields can contribute *E. coli* to waterways, but incorporation decreases the likelihood of transport. Livestock numbers include both animal feeding operations (AFOs) and concentrated animal feed operations (CAFOs); both are relevant because manure is applied to croplands and pasturelands and reaches surface waters even when the manure comes from a zero-runoff feedlot.

Individuals on domestic wastewater sewers within each HUC10 were estimated by summing the population for all of the 2020 U.S. Census Block Centroid Population points that fall within census urban areas, which were assumed to be connected to the WWTPs in applicable drainage areas [U.S. Census Bureau, 2020]. Bacteria within wastewater in urban areas with a WWTP were assumed to be treated according to the WWTP's permit requirement.

People using an OWTS were estimated by Larimer and Weld Counties' OWTS [Larimer County, 2024; Fischer, 2023] within each HUC10 and multiplying the total by 3.31, which is the number of individuals assumed to be on each OWTS in the applicable counties [Thomas, 2024]. This evaluation represents all OWTSs, including compliant systems.

Pet populations were estimated by calculating the number of households from the 2020 U.S. Census Block Centroid Population points within each applicable impairment drainage area and assuming 0.58 dogs (36.5 percent of households times 1.6 dogs per household) and 0.64 cats (30.4 percent of households times 2.1 cats per household) per household [American Veterinary Medical Association, 2016].

Table 5-7 summarizes the number of animals, estimated *E. coli* produced, and percent of the total *E. coli* from each animal type within each HUC10. These estimates provide watershed managers with the relative magnitudes of total production by source and do not account for treatment by WWTPs or OWTSs, wash off, delivery, instream growth, or die-off dynamics that occur with *E. coli* and substantially affect their delivery to surface waters. Because of water treatment, far less *E. coli* are generally discharged from WWTPs than what is produced and sent to them.

Several factors affect whether *E. coli* reach a stream. The analysis illustrates that across the entire project area, the amount of *E. coli* produced by livestock is substantially greater than the *E. coli* produced by humans or pets. Only one HUC10, 1019000606 (Outlet Big Thompson River), has a higher production from humans or pets than from livestock. Both Larimer and Weld Counties are Right-to-Farm counties, which protects certain types of operations from nuisance suits when their activities impact neighboring property through activities like noise or odor.

Table 5-7. Estimated Number of Animals, E. coli Produced, and Percent of E. coli Produced in Each HUC10 (Page 1 of 3)

HUC10	Description	Category	Subcategory	Count	Total <i>E. coli</i> Produced (cfu/day)	Total <i>E. coli</i> Produced (%)
1019000601	North Fork Big Thompson River	Humans	OWTS	2,880	3.6E+12	15
1019000601	North Fork Big Thompson River	Humans	WWTP	0	0.0E+00	0
1019000601	North Fork Big Thompson River	Pets	Dogs	505	1.6E+12	7
1019000601	North Fork Big Thompson River	Pets	Cats	557	1.8E+12	7
1019000601	North Fork Big Thompson River	Livestock	Cattle	678	1.4E+13	58
1019000601	North Fork Big Thompson River	Livestock	Horses	102	2.7E+12	11
1019000601	North Fork Big Thompson River	Livestock	Poultry	126	7.4E+09	0
1019000601	North Fork Big Thompson River	Livestock	Sheep	41	3.1E+11	1
1019000601	North Fork Big Thompson River	Livestock	Goats	0	0.0E+00	0
1019000601	North Fork Big Thompson River	Livestock	Hogs	6	3.4E+10	0
1019000602	Headwaters Big Thompson River	Humans	OWTS	4,737	6.0E+12	7
1019000602	Headwaters Big Thompson River	Humans	WWTP	13,644	1.7E+13	19
1019000602	Headwaters Big Thompson River	Pets	Dogs	3,221	1.0E+13	11
1019000602	Headwaters Big Thompson River	Pets	Cats	3,554	1.1E+13	13
1019000602	Headwaters Big Thompson River	Livestock	Cattle	1,734	3.6E+13	41
1019000602	Headwaters Big Thompson River	Livestock	Horses	263	7.0E+12	8
1019000602	Headwaters Big Thompson River	Livestock	Poultry	324	1.9E+10	0
1019000602	Headwaters Big Thompson River	Livestock	Sheep	103	7.8E+11	1
1019000602	Headwaters Big Thompson River	Livestock	Goats	1	1.8E+10	0
1019000602	Headwaters Big Thompson River	Livestock	Hogs	16	8.9E+10	0
1019000603	Buckhorn Creek	Humans	OWTS	6,041	7.6E+12	16

Table 5-7. Estimated Number of Animals, E. coli Produced, and Percent of E. coli Produced in Each HUC10 (Page 2 of 3)

HUC10	Description	Category	Subcategory	Count	Total <i>E. coli</i> Produced (cfu/day)	Total <i>E. coli</i> Produced (%)
1019000603	Buckhorn Creek	Humans	WWTP	0	0.0E+00	0
1019000603	Buckhorn Creek	Pets	Dogs	1,059	3.3E+12	7
1019000603	Buckhorn Creek	Pets	Cats	1,168	3.7E+12	8
1019000603	Buckhorn Creek	Livestock	Cattle	1,263	2.6E+13	56
1019000603	Buckhorn Creek	Livestock	Horses	190	5.0E+12	11
1019000603	Buckhorn Creek	Livestock	Poultry	237	1.4E+10	0
1019000603	Buckhorn Creek	Livestock	Sheep	75	5.7E+11	1
1019000603	Buckhorn Creek	Livestock	Goats	2	3.5E+10	0
1019000603	Buckhorn Creek	Livestock	Hogs	12	6.7E+10	0
1019000604	Headwaters Little Thompson River	Humans	OWTS	5,571	7.0E+12	24
1019000604	Headwaters Little Thompson River	Humans	WWTP	0	0.0E+00	0
1019000604	Headwaters Little Thompson River	Pets	Dogs	976	3.1E+12	10
1019000604	Headwaters Little Thompson River	Pets	Cats	1,077	3.4E+12	11
1019000604	Headwaters Little Thompson River	Livestock	Cattle	616	1.3E+13	43
1019000604	Headwaters Little Thompson River	Livestock	Horses	107	2.8E+12	10
1019000604	Headwaters Little Thompson River	Livestock	Poultry	109	6.4E+09	0
1019000604	Headwaters Little Thompson River	Livestock	Sheep	39	2.9E+11	1
1019000604	Headwaters Little Thompson River	Livestock	Goats	3	5.3E+10	0
1019000604	Headwaters Little Thompson River	Livestock	Hogs	8	4.6E+10	0
1019000605	Dry Creek-Little Thompson River	Humans	OWTS	10,923	1.4E+13	8
1019000605	Dry Creek-Little Thompson River	Humans	WWTP	16,719	2.1E+13	12

Table 5-7. Estimated Number of Animals, E. coli Produced, and Percent of E. coli Produced in Each HUC10 (Page 3 of 3)

HUC10	Description	Category	Subcategory	Count	Total <i>E. coli</i> Produced (cfu/day)	Total <i>E. coli</i> Produced (%)
1019000605	Dry Creek-Little Thompson River	Pets	Dogs	4,844	1.5E+13	9
1019000605	Dry Creek-Little Thompson River	Pets	Cats	5,345	1.7E+13	10
1019000605	Dry Creek-Little Thompson River	Livestock	Cattle	4,217	8.8E+13	50
1019000605	Dry Creek-Little Thompson River	Livestock	Horses	366	9.7E+12	6
1019000605	Dry Creek-Little Thompson River	Livestock	Poultry	17,543	1.0E+12	1
1019000605	Dry Creek-Little Thompson River	Livestock	Sheep	1,185	9.0E+12	5
1019000605	Dry Creek-Little Thompson River	Livestock	Goats	4	7.1E+10	0
1019000605	Dry Creek-Little Thompson River	Livestock	Hogs	54	3.1E+11	0
1019000606	Outlet Big Thompson River	Humans	OWTS	20,406	2.6E+13	6
1019000606	Outlet Big Thompson River	Humans	WWTP	10,2445	1.3E+14	30
1019000606	Outlet Big Thompson River	Pets	Dogs	21,527	6.8E+13	16
1019000606	Outlet Big Thompson River	Pets	Cats	23,754	7.5E+13	17
1019000606	Outlet Big Thompson River	Livestock	Cattle	5,453	1.1E+14	26
1019000606	Outlet Big Thompson River	Livestock	Horses	491	1.3E+13	3
1019000606	Outlet Big Thompson River	Livestock	Poultry	17,150	1.0E+12	0
1019000606	Outlet Big Thompson River	Livestock	Sheep	1,210	9.1E+12	2
1019000606	Outlet Big Thompson River	Livestock	Goats	5	8.8E+10	0
1019000606	Outlet Big Thompson River	Livestock	Hogs	54	3.0E+11	0

5.3 HEAVY METALS

Heavy metal sources are typically from abandoned mines, runoff from developed areas, and contributions from soils. Heavy metals that can be sourced from irrigation on Pierre Shale areas (selenium and arsenic) would also benefit from changing irrigation practices. Flood irrigation typically results in substantial irrigation return flows, which can be high in selenium or arsenic when soils in the irrigated fields have high selenium or arsenic content. The conversion to more modern center-pivot and side-roll sprinkler systems would help decrease the volume of selenium or arsenic-rich return flows entering waterbodies [Hawley and Rodriguez-Jeangros, 2021].

Heavy metals are also not addressed with PLET. Larimer and Weld Counties have a rich mining history dating back to the mid-1800s. Commodities consisting of beryllium, coal, copper, gold, iron, lead, manganese, molybdenum, rare earth elements, silica, silver, tungsten, uranium, vanadium, and zinc were mined [The Diggings, 2024].

Sources of some heavy metals, according to a publication within Heliyon on ScienceDirect [Briffa et al., 2020] and the *Big Thompson State of the Watershed 2021 Final Report* [Hawley and Rodriguez-Jeangros, 2021], also include:

- / Zinc mining and metal/paint/cosmetic/energy/hygiene/plastic/textile/supplement production
- Lead metal/infrastructure/paint/glass production, manufacturing processes, and combustion of gas
- / Selenium animal feed/supplement production, manufacturing processes, fossil fuel combustion, and irrigation return flows in areas with Pierre Shale
- / Arsenic pressure-treated wood, glass/pesticide production, doping, pyrotechnics, and Pierre Shale
- Copper copper sulfate algicide, alloy manufacturing processes,
 metal/fertilizer/chemical/jewelry production, and wood/fabric preservation
- / Iron mining, manufacturing processes, and metal/supplement/food production
- / Manganese alloy manufacturing processes, metal/fertilizer/firework/pesticide/cosmetic production
- / Mercury chemistry, chemical manufacturing processes, and pesticide/paint/energy production

The CDPHE Water Quality Control Commission has designated several streams within both counties as impaired (see Clean Water Act [CWA] Section 303(d) list and 5 CCR 1002-93) for these elements (Table 4-1), suggesting that mined lands or AMLs are a potential source of NPS pollution. Several federal and state agencies have mapped and cataloged abandoned mines within Colorado and quantified the AMLs in Larimer and Weld Counties. To determine areas most likely polluted by AMLs, known AML locations were summarized per HUC10. Although not all AMLs have been discovered and mapped, an assumption was made that the more points in a HUC10, the more likely that HUC10 was polluted by AMLs. Table 5-8 lists the number of AMLs for each HUC10 [Graves, 2024].

Table 5-8. Number of Identified Abandoned Mine Lands per HUC10

HUC10	Description	Count
1019000601	North Fork Big Thompson River	5
1019000602	Headwaters Big Thompson River	1
1019000603	Buckhorn Creek	4
1019000604	Headwaters Little Thompson River	0
1019000605	Dry Creek-Little Thompson River	0
1019000606	Outlet Big Thompson River	3

In *Colorado's Nonpoint Source Program: 2022 Annual Report* [Moore, 2022], the recommended BMPs associated with pollution from AMLs are hydrologic controls (diversion ditches, mine tailings removal, erosion and sediment control, and revegetation) and passive treatments (aerobic wetlands, anaerobic wetlands, and aeration and settling ponds).

In the Big and Little Thompson project area, the detailed geology layers mapping Pierre Shale did not intersect HUC10 1019000601 or 1019000602, and very little intersected 1019000603. The geology layers [Brandt and Colgan, 2023; Workman et al., 2018] include the majority of Pierre Shale in Larimer and Weld Counties. Of the watersheds where layers are available, most of the Pierre Shale is not irrigated. Every HUC10 in the project area has selenium and/or arsenic impairments. Non-irrigated Pierre Shale is also likely to be contributing to the impairments, or other unknown sources are likely present. Table 5-9 summarizes the acres of irrigation, irrigation type, and Pierre Shale (where information was available) throughout the project area.

Table 5-9. Acres of Irrigation and Pierre Shale

	Irrigated, N	ot Pierre Shale	Irrigated	l, Pierre Shale	Not Irrigated,
HUC10	Flood (acres)	Sprinkler (acres)	Flood (acres)	Sprinkler (acres)	Pierre Shale (acres)
1019000602	91	N/A	N/A	N/A	N/A
1019000603	456	138	N/A	N/A	33
1019000605	13,376	8,248	728	360	6,212
1019000606	12,729	7,700	709	182	7,373

6.0 PRIORITY AREAS FOR IMPLEMENTATION

Priority areas are locations that significantly contribute to the water quality parameters identified as pollutants of concern. The following sources were used to identify priority areas for BMP implementation:

- / PLET model (for nutrients and sediment)
- / production per HUC10 assessment (for *E. coli*)
- / AML density assessment (for heavy metals)

Point source permittees should compare the cost options of upstream NPS BMPs to the cost of mechanical treatment. Such collaborations and coordinated efforts may improve economic feasibility for improving water quality regionally.

6.1 NUTRIENTS AND SEDIMENT

The PLET model indicates that throughout the entire Big Thompson River HUC8 within Larimer and Weld Counties, the primary source of nutrients and sediment is cropland; however, cropland only makes up approximately 12 percent of the total area. Figures 6-1, 6-2, and 6-3 show the total daily loads per HUC10 of nitrogen, phosphorus, and TSS, respectively, from PLET [EPA, 2022]. Priority areas for the reduction of nutrients and sediment are HUC10s 1019000605 (Dry Creek-Little Thompson River) and 1019000606 (Outlet Big Thompson River) on cropland. The source figures from PLET only represent areas that are not MS4s. Data trends from Hawley and Rodriguez-Jeangros [2021] show similar trends for nutrients and sediment as PLET results, with nutrients and sediment increasing in the lower watersheds. No reaches are impaired for total nitrogen, total phosphorus, or sediment in Table 4-1; however, all should be protected so that they do not become impaired over time.

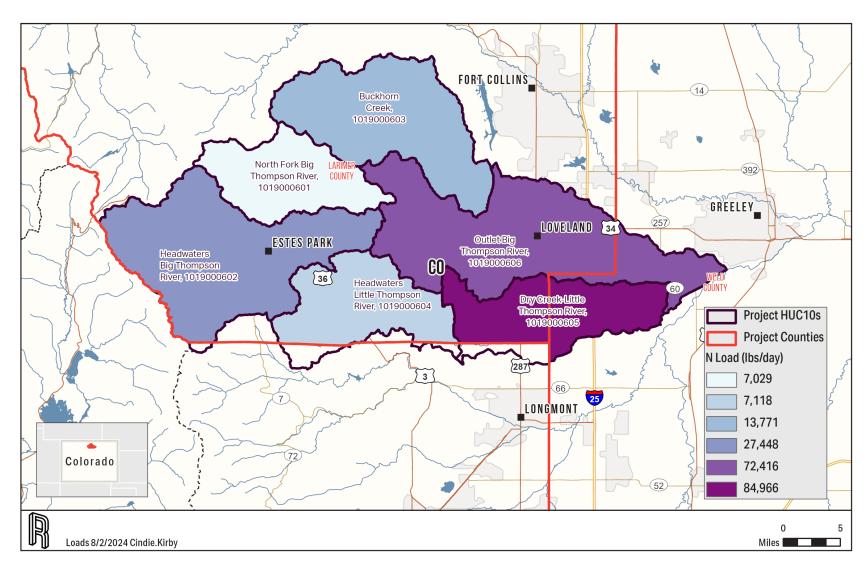
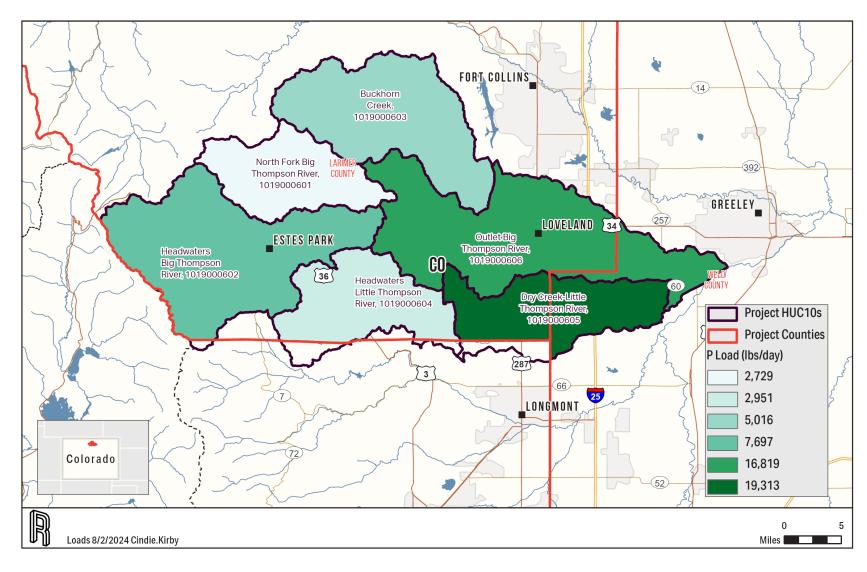



Figure 6-1. Nitrogen Contributions per HUC10.

Figure 6-2. Phosphorus Contributions per HUC10.

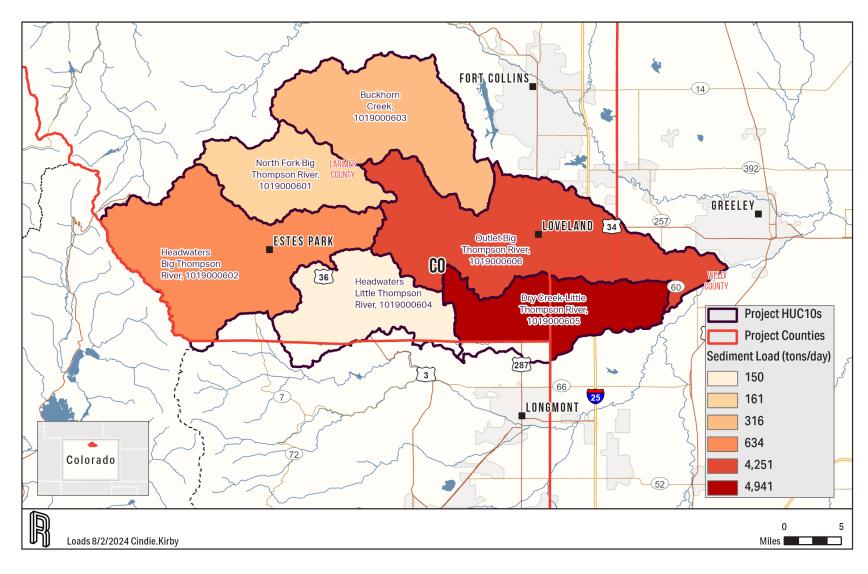


Figure 6-3. Sediment Contributions per HUC10.

6.2 E. COLI

The bacteria production assessment revealed that, overall, throughout the Big Thompson River HUC8, cattle are the primary producers of bacteria. Figure 6-4 provides the total production of bacteria per HUC10 based on the assessment within GIS. Priority areas for reduction of *E. coli* are HUC10s 1019000605 (Dry Creek-Little Thompson River) and 1019000606 (Outlet Big Thompson River) because they have the highest production rates overall. Practices related to cattle exclusion from streams, such as fencing, off-stream watering, and seasonal riparian area management, should be a priority in these watersheds. The *E. coli*-impaired waterbodies align well with the bacteria production analysis and exist in HUC10s 1019000605 (Dry Creek-Little Thompson River) and 1019000606 (Outlet Big Thompson River). The *E. coli*-impaired waterbodies in Table 4-1 are located in the priority areas.

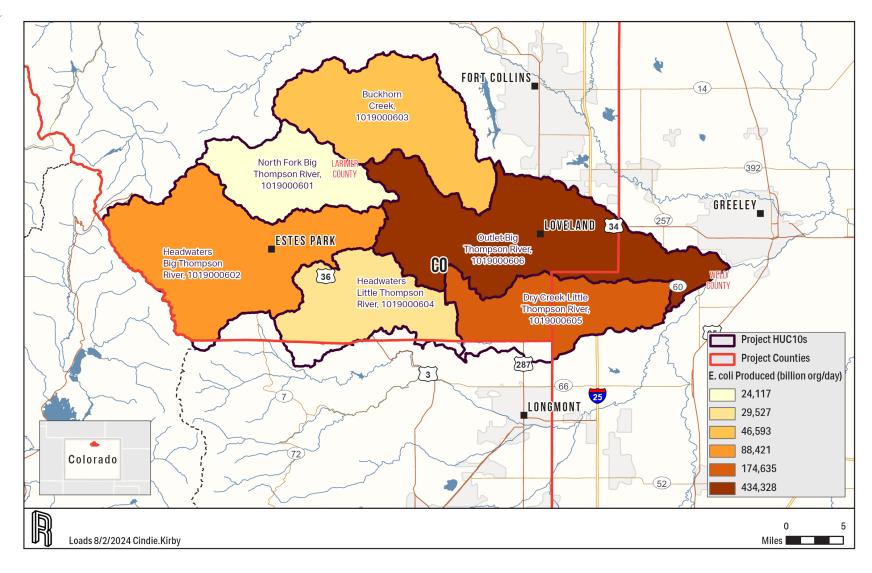


Figure 6-4. Bacteria Produced per HUC10.

RSI-3425 DRAFT

6.3 HEAVY METALS

The AML density identified HUC10s 1019000601 (North Fork Big Thompson River) and 1019000603 (Buckhorn Creek) as the HUC10 watersheds with the highest densities of AMLs; therefore, they should be the primary targets (priority areas) in continuing AML identification and practice implementation to reduce heavy metals in waters. Waterbodies impaired with heavy metals for aquatic life constituents (dissolved copper, selenium, and zinc; and total mercury and iron) align well with the AML density analysis and exist in the HUC10 watersheds with identified AMLs. Similarly, waterbodies impaired with heavy metals for water supply constituents (dissolved manganese and total arsenic) occur in all HUC10 watersheds, whether or not AMLs were identified. The density of AMLs per square mile is illustrated in Figure 6-5 [Graves, 2024]. Priority watersheds for heavy metal-reducing BMPs should be the areas with the highest density of AMLs. Additionally, where selenium- and arsenic-impaired waters exist with high levels of irrigated lands on Pierre Shale, more efficient irrigation practices should be considered a priority, especially in areas draining to the arsenic/selenium impaired waters shown in Table 4-1.

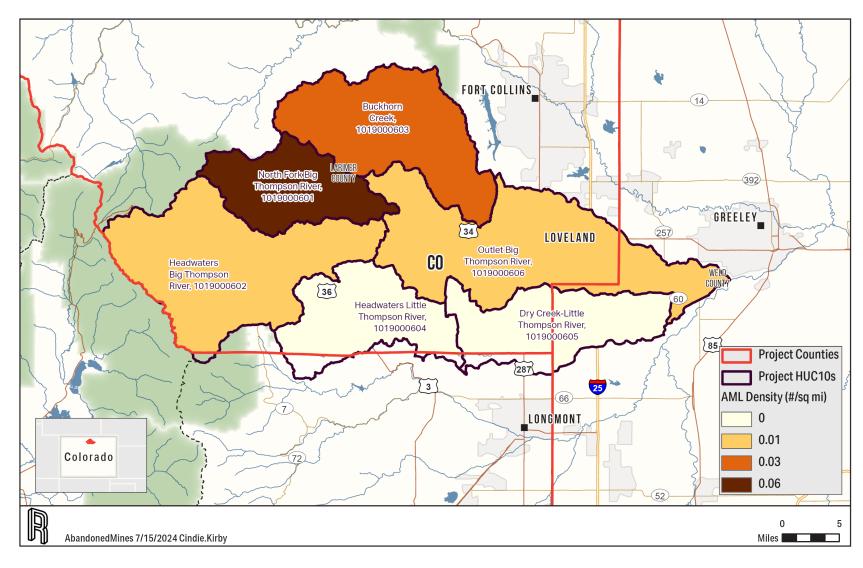


Figure 6-5. Density of Abandoned Mine Lands for Each HUC10.

7.0 BEST MANAGEMENT PRACTICES LOAD REDUCTIONS

Numerous resources exist in Colorado and nationally that provide information on BMPs. Some give data about implementation, and others inform on expected load reductions. Understanding that most BMPs require maintenance over time to remain effective is important. Some BMPs also need individuals to operate them for effectiveness. The Community-enabled Lifecycle Analysis of Stormwater Infrastructure Costs (CLASIC) tool is available on the CLASIC website and provides more information about life cycles of some stormwater BMPs. The following websites were used to summarize the overall BMP options:

- / Colorado Department of Agriculture BMPs
- I Colorado Water Conservation Board Floodplain Stormwater and Criteria Manual
- / Colorado Water Conservation Board BMPs
- / Colorado Waterwise Guidebook of Best Practices for Municipal Water Conservation in Colorado
- I Colorado Ag Water Quality BMPs for Colorado
- / Colorado Forestry Best Management Practices 2018 Field Monitoring Report
- / Colorado Wetland Information Center Wetland BMPs
- / Colorado Stormwater Center
- Colorado Department of Transportation Permanent Water Quality Program
- / Upper South Platte BMPs for Protecting Source Water Quality
- International Stormwater BMP Database
- / One Water Solutions Institute
- / EPA Menu of Stormwater BMPs
- / USDA Stream Restoration Manual
- / Natural Resources Conservation Service Conservation Practice Standards
- / USDA Colorado Field Office Technical Guide
- / Pollution Load Estimator Tool

7.1 NUTRIENTS AND SEDIMENT

For this project, nutrient and sediment BMPs available in PLET were prioritized using multiple metrics, including stakeholder input and BMP effectiveness. The BMP reduction factors for PLET BMPs are listed in Tables 7-1 through 7-5 for cropland, pastureland, feedlots, forest, and urban lands. The average of the nitrogen, phosphorus, and sediment reduction factors was the first metric used for prioritization. The average survey score based on Survey #2 results was the second metric. The final score, the reduction survey, was the product of the two metrics. The following practices were chosen and run in PLET based on reduction survey scores: the top two cropland, top two pasture, top feedlot, top two forest, and top three urban. These priority PLET practices for each respective land use are in bold under the column headings of Tables 7-1 through 7-5. The priority PLET practices were run on

25 percent of the modeled land cover they were developed for (i.e., cropland, pasture, feedlot, forest, urban). Associated reductions for each PLET practice run are provided in Table 7-6. Reductions at the HUC10 level are included in Appendix D. Several of the practice reduction factors suggest that reducing sediment loading would simultaneously reduce nutrient loading. PLET BMP descriptions and the reduction fractions can be found in the "Best Management Practice Definition Document for Pollution Load Estimation Tool" [EPA, 2023].

 Table 7-1. PLET Cropland Best Management Practices and Average Reduction Metric

Practice	Nitrogen Reduction (Fraction)	Phosphorus Reduction (Fraction)	Sediment Reduction (Fraction)	Average Reduction ^(a) (Fraction)	Average Survey Score ^(b)	Reduction Survey Score ^(c)
Streambank Stabilization and Fencing	0.75	0.75	0.75	0.75	2.0	1.5
Buffer - Grass (35 feet wide)	0.34	0.44	0.53	0.44	3.0	1.3
Contour Farming	0.34	0.46	0.41	0.40	2.0	0.8
Terrace	0.27	0.31	0.41	0.33	2.0	0.7
Controlled Drainage	0.39	0.35	0	0.25	2.5	0.6
Conservation Tillage 1 (30-59% residue)	0.07	0.36	0.46	0.30	2.0	0.6
Conservation Tillage 2 (equal or more than 30% residue)	0.13	0.69	0.79	0.54	1.0	0.5
Nutrient Management 2 (determined rate plus additional considerations)	0.22	0.56	0	0.26	2.0	0.5
Buffer – Forest (100 feet wide)	0.49	0.47	0.6	0.52	1.0	0.5
Nutrient Management 1 (determined rate)	0.15	0.45	0	0.20	2.0	0.4
Bioreactor	0.45	0	0	0.15	1.0	0.2
Two-Stage Ditch	0.12	0.28	0	0.13	1.0	0.1
Cover Crop 1 (group A commodity; high till only for sediment)	0.0078	0	0	0.00	0.0	0.0
Cover Crop 2 (group A traditional normal planting time; high till only for total phosphorus and sediment)	0.2	0.07	0.1	0.12	0.0	0.0
Cover Crop 3 (group A traditional early planting time) (high till only for total phosphorus and sediment)	0.2	0.15	0.2	0.18	0.0	0.0

⁽a) Average Reduction is the product of the nitrogen, phosphorus, and sediment reduction.

⁽b) Average Survey Score is the average of the survey prioritization from Survey #2.

⁽c) The Survey Reduction Score is the product of the average reduction and the average survey score.

 Table 7-2. PLET Pasture Best Management Practices and Average Reduction Metric

Practice	Nitrogen Reduction (Fraction)	Phosphorus Reduction (Fraction)	Sediment Reduction (Fraction)	Average Reduction ^(a) (Fraction)	Average Survey Score ^(b)	Reduction Survey Score ^(c)
Streambank Stabilization and Fencing	0.75	0.75	0.75	0.75	3.0	2.3
Buffer – Grass (minimum 35 feet wide)	0.87	0.89	0.65	0.80	2.8	2.2
Livestock Exclusion Fencing	0.2	0.43	0.64	0.42	3.4	1.4
Buffer – Forest (minimum 35 feet wide)	0.45	0.4	0.53	0.46	2.2	1.0
Streambank Protection Without Fencing	0.15	0.22	0.58	0.32	2.8	0.9
Critical Area Planting	0.18	0.2	0.42	0.27	3.3	0.9
Grazing Land Management (rotational grazing with fenced areas)	0.43	0.26	0	0.23	3.8	0.9
Heavy Use Area Protection	0.18	0.19	0.33	0.23	3.5	0.8
Prescribed Grazing	0.41	0.23	0.33	0.32	2.5	0.8
Multiple Practices	0.25	0.2	0.22	0.22	3.6	0.8
Winter Feeding Facility	0.35	0.4	0.4	0.38	2.0	0.8
Use Exclusion	0.43	0.08	0.51	0.34	1.7	0.6
30-meter Buffer With Optimal Grazing	0.16	0.65	0	0.27	1.5	0.4
Alternative Water Supply	0.18	0.13	0.2	0.17	2.0	0.3
Pasture and Hayland Planting (also called Forage Planting)	0.18	0.15	0	0.11	3.0	0.3
Litter Storage and Management	0.14	0.14	0	0.09	3.4	0.3

⁽a) Average Reduction is the product of the nitrogen, phosphorus, and sediment reduction.

⁽b) Average Survey Score is the average of the survey prioritization from Survey #2.

⁽c) The Survey Reduction Score is the product of the average reduction and the average survey score.

 Table 7-3. PLET Feedlot Best Management Practices and Average Reduction Metric

Practice	Nitrogen Reduction (Fraction)	Phosphorus Reduction (Fraction)	Sediment Reduction (Fraction)	Average Reduction ^(a) (Fraction)	Average Survey Score ^(b)	Reduction Survey Score ^(c)
Waste Management System	8.0	0.9	0	0.57	3.6	2.0
Waste Storage Facility	0.65	0.6	0	0.42	3.6	1.5
Diversion	0.45	0.7	0	0.38	3.5	1.3
Terrace	0.55	0.85	0	0.47	2.8	1.3
Filter Strip	0	0.85	0	0.28	4.0	1.1
Runoff Management System	0	0.83	0	0.28	3.3	0.9
Solids Separation Basin With Infiltration Bed	0	8.0	0	0.27	3.0	0.8
Solids Separation Basin	0.35	0.31	0	0.22	3.0	0.7

⁽a) Average Reduction is the product of the nitrogen, phosphorus, and sediment reduction.

⁽b) Average Survey Score is the average of the survey prioritization from Survey #2.

⁽c) The Survey Reduction Score is the product of the average reduction and the average survey score.

 Table 7-4. PLET Forest Best Management Practices and Average Reduction Metric

Practice	Nitrogen Reduction (Fraction)	Phosphorus Reduction (Fraction)	Sediment Reduction (Fraction)	Average Reduction ^(a) (Fraction)	Average Survey Score ^(b)	Reduction Survey Score ^(c)
Site Preparation/Straw/ Crimp Seed/Net	0	0	0.93	0.31	3.7	1.1
Site Preparation/Straw/ Crimp Seed/Fertilizer/ Transplants	0	0	0.95	0.32	3.0	1.0
Road Grass and Legume Seeding	0	0	0.71	0.24	3.7	0.9
Site Preparation/Straw/ Polymer/Seed/Fertilizer/ Transplants	0	0	0.86	0.29	3.0	0.9
Site Preparation/Hydro Mulch/Seed/Fertilizer	0	0	0.71	0.24	3.5	0.8
Site Preparation/Steep Slope Seeder/ Transplants	0	0	0.81	0.27	3.0	0.8
Site Preparation/Straw/ Net/Seed/Fertilizer/Tran splants	0	0	0.83	0.28	2.8	0.8
Site Preparation/Hydro Mulch/Seed/Fertilizer/ Transplants	0	0	0.69	0.23	3.2	0.7
Road Hydro Mulch	0	0	0.41	0.14	4.3	0.6
Road Tree Planting	0	0	0.5	0.17	3.4	0.6
Road Straw Mulch	0	0	0.41	0.14	4.0	0.5
Road Dry Seeding	0	0	0.41	0.14	3.6	0.5

⁽a) Average Reduction is the product of the nitrogen, phosphorus, and sediment reduction.

⁽b) Average Survey Score is the average of the survey prioritization from Survey #2.

⁽c) The Survey Reduction Score is the product of the average reduction and the average survey score.

 Table 7-5. PLET Urban Best Management Practices and Average Reduction Metric (Page 1 of 2)

Practice	Nitrogen Reduction (Fraction)	Phosphorus Reduction (Fraction)	Sediment Reduction (Fraction)	Average Reduction ^(a) (Fraction)	Average Survey Score ^(b)	Reduction Survey Score ^(c)
Extended Wet Detention	0.55	0.69	0.86	0.70	3.8	2.7
Infiltration Basin	0.6	0.65	0.75	0.67	3.3	2.2
Concrete Grid Pavement	0.9	0.9	0.9	0.90	2.3	2.1
Low Impact Development - Infiltration Swale	0.5	0.65	0.9	0.68	2.9	2.0
Porous Pavement	0.85	0.65	0.9	0.80	2.2	1.8
Bioretention Facility	0.63	0.8	0	0.48	3.6	1.7
Infiltration Trench	0.55	0.6	0.75	0.63	2.6	1.6
Infiltration Devices	0	0.83	0.94	0.59	2.7	1.6
Vegetated Filter Strips	0.4	0.45	0.73	0.53	2.9	1.5
Settling Basin	0	0.52	0.82	0.45	3.3	1.5
Low Impact Development - Infiltration Trench	0.5	0.5	0.9	0.63	2.3	1.4
Dry Detention	0.3	0.26	0.58	0.38	3.7	1.4
Wetland Detention	0.2	0.44	0.78	0.47	2.9	1.4
Sand Filter/Infiltration Basin	0.35	0.5	0.8	0.55	2.5	1.4
Low Impact Development - Filter/Buffer Strip	0.3	0.3	0.6	0.40	3.3	1.3
Low Impact Development - Bioretention	0.43	0.81	0	0.41	3.1	1.3
Low Impact Development - Dry Well	0.5	0.5	0.9	0.63	1.9	1.2
Grass Swales	0.1	0.25	0.65	0.33	3.5	1.2
Alum Treatment	0.6	0.9	0.95	0.82	1.4	1.1
Wet Pond	0.35	0.45	0.6	0.47	2.3	1.1
Sand Filters	0	0.38	0.83	0.40	2.6	1.0
Low Impact Development - Wet Swale	0.4	0.2	0.8	0.47	2.1	1.0
Water Quality Inlet With Sand Filter	0.35	0	0.8	0.38	2.5	1.0
Low Impact Development - Vegetated Swale	0.08	0.18	0.48	0.25	3.3	0.8

 Table 7-5. PLET Urban Best Management Practices and Average Reduction Metric (Page 2 of 2)

Practice	Nitrogen Reduction (Fraction)	Phosphorus Reduction (Fraction)	Sediment Reduction (Fraction)	Average Reduction ^(a) (Fraction)	Average Survey Score ^(b)	Reduction Survey Score ^(c)
Filter Strip – Agricultural	0.53	0.61	0.65	0.60	1.3	0.8
Water Quality Inlets	0.2	0.09	0.37	0.22	3.3	0.7
Oil/Grit Separator	0.05	0.05	0.15	80.0	3.7	0.3
Weekly Street Sweeping	0	0.06	0.16	0.07	2.9	0.2

⁽a) Average Reduction is the product of the nitrogen, phosphorus, and sediment reduction.

⁽b) Average Survey Score is the average of the survey prioritization from Survey #2.

⁽c) The Survey Reduction Score is the product of the average reduction and the average survey score.

Table 7-6. Reductions From Priority PLET Best Management Practices Run on 25 Percent of Each Applicable Land Cover

Land Use	Percent of Total Area	Practice	Nitrogen Load (lb/year)	Nitrogen Reduction (%)	Phosphorus Load (lb/year)	Phosphorus Reduction (%)	Sediment Load (tons/year)	Sediment Reduction (%)
All	N/A	Base Load (no BMPs)	212,748	N/A	54,524	N/A	10,452	N/A
Cropland	12	Stream Stabilization and Fencing	192,456	9.5	49,586	9.1	8,922	14.6
Cropland	12	Buffer - Grass (35 feet wide)	202,308	4.9	51,401	5.7	9,370	10.4
Pasture	1	Stream Stabilization and Fencing	211,379	0.6	54,396	0.2	10,426	0.3
Pasture	1	Livestock Exclusion Fencing	212,311	0.2	54,437	0.2	10,429	0.2
Feedlot	<1	Waste Management System	209,686	1.4	53,835	1.3	10,452	0.0
Forest	66	Site Prep/Straw/ Crimp Seed/Net	212,349	0.2	54,371	0.3	10,327	1.2
Forest	66	Site Prep/Straw/ Crimp Seed/Fertilizer/ Transplants	212,341	0.2	54,367	0.3	10,324	1.2
Urban	6	Extended Wet Detention	209,149	1.7	53,811	1.3	10,230	2.1
Urban	6	Infiltration Basin	208,822	1.9	53,853	1.2	10,258	1.9
Urban	6	Concrete Grid Pavement	206,859	2.8	53,594	1.7	10,219	2.2

lb/year = pounds per year

Numerous BMPs that reduce nutrient and sediment NPS loads exist from other sources not included in PLET. Nutrient and sediment load reductions from BMPs are ranked in the Natural Resources Conservation Service (NRCS) Conservation Practice Physical Effects (CPPE) [NRCS, 2024b] as substantial, moderate to substantial, moderate, slight to moderate, and slight. Similarly, reductions expected from urban practices are provided in the International Stormwater BMP Database (BMPDB) [The Water Research Foundation, 2024]. Tables 7-7 and 7-8 list the most effective CPPE practices (i.e., substantial, moderate to substantial, and moderate reductions) and urban practices for sediment reduction. Table 7-9 shows the most effective CPPE practices (i.e., substantial, moderate to substantial, and moderate reductions) for nutrient reduction, and Tables 7-10 and 7-11 provide the urban practices for nitrogen and phosphorus reduction, respectively [NRCS, 2024b]. Irrigation practices are important in the project area for the reduction of nutrients and sediment but were not available in PLET. The NRCS Irrigation Water Management practice code Number 449 has slight to moderate improvement (less than every other practice listed in CPPE practices tables) for sediment and nutrients. However, the NRCS Irrigation Water Management practice code Number 449 has been added to these tables because of its high usage in the project area. Other practices with slight to moderate improvement should not be discouraged, even though they are not included in the tables in this section.

Table 7-7. Most Effective Sediment to Surface Water Reducing Agricultural Best Management Practices From the Colorado Natural Resources Conservation Service Conservation Practice Physical Effects (Page 1 of 2)

Practice	Practice Code	Unit	Effect	Rationale
Constructed Wetland	656	Acre	Substantial Improvement	The system traps and holds suspended materials from entering surface waters.
Filter Strip	393	Acre	Substantial Improvement	Vegetation protects the soil surface and traps sediment, nutrients, and other materials.
Grassed Waterway	412	Acre	Substantial Improvement	Erosion is controlled, vegetation traps sediment, and runoff is delivered at a safe velocity.
Lined Waterway or Outlet	468	Feet	Substantial Improvement	Erosion is controlled, vegetation traps sediment, and runoff is delivered at a safe velocity.
Riparian Forest Buffer	391	Acre	Substantial Improvement	Vegetation protects the soil surface and traps sediment, nutrients, and other materials.
Anionic Polyacrylamide Erosion Control	450	Acre	Moderate to Substantial Improvement	The action reduces erosion and sediment load.
Conservation Cover	327	Acre	Moderate to Substantial Improvement	Less erosion and runoff reduce sediment.
Critical Area Planting	342	Acre	Moderate to Substantial Improvement	Vegetation reduces erosion and sediment delivery.
Forest Farming	379	Acre	Moderate to Substantial Improvement	Varied canopy layers and surface cover and organic matter management reduce sediment-laden runoff from reaching surface water conveyances.
Grazing Land Mechanical Treatment	548	Acre	Moderate to Substantial Improvement	Improved hydrologic indicators increase infiltration and decrease runoff.
Land Reclamation, Abandoned Mined Land	543	Acre	Moderate to Substantial Improvement	Erosion control and revegetation reduces concerns about sediments.
Land Reclamation, Currently Mined Land	544	Acre	Moderate to Substantial Improvement	Erosion control and revegetation reduces concerns about sediments.
Land Reclamation, Landslide Treatment	453	N/A	Moderate to Substantial Improvement	Erosion control and increased cover reduces runoff and sediment.
Residue and Tillage Management, No Till	329	Acre	Moderate to Substantial Improvement	Less erosion and runoff reduce the transport of sediment.
Riparian Herbaceous Cover	390	Acre	Moderate to Substantial Improvement	Vegetation protects the soil surface and traps sediment, nutrients, and other materials.
Sediment Basin	350	N/A	Moderate to Substantial Improvement	The basin retains sediment, decreasing runoff turbidity.
Stormwater Runoff Control	570	N/A	Moderate to Substantial Improvement	Controlling erosion and runoff reduces off-site sediment
Vegetative Barrier	601	Feet	Moderate to Substantial Improvement	Vegetation slows runoff and filters sediment.
Water and Sediment Control Basin	638	N/A	Moderate to Substantial Improvement	The basin retains sediment and minimizes turbidity.
Access Control	472	Acre	Moderate Improvement	Excluding animals, people, and vehicles influences the vigor and health of vegetation and soil conditions, reducing sediment supply to surface waters when applied with other management practices.
Alley Cropping	311	Acre	Moderate Improvement	Vegetation inhibits sediment-laden water to allow it to drop sediment load.
Conservation Crop Rotation	328	Acre	Moderate Improvement	Depending on crop rotation and biomass produced, crop rotation reduces erosion and runoff, which reduces transport of sediment.
Contour Buffer Strips	332	Acre	Moderate Improvement	Contour buffer strips reduce sheet and rill erosion and slow the velocity of runoff, thereby reducing the transport of sediment to surface water.

Table 7-7. Most Effective Sediment to Surface Water Reducing Agricultural Best Management Practices From the Colorado Natural Resources Conservation Service Conservation Practice Physical Effects (Page 2 of 2)

Practice	Practice Code	Unit	Effect	Rationale
Contour Orchard and Other Perennial Crops	331	Acre	Moderate Improvement	Contouring reduces sheet and rill erosion and slows the velocity of runoff, thereby reducing the transport of sediment to surface water.
Field Border	386	Feet	Moderate Improvement	Vegetation protects the soil surface and traps sediment.
Residue and Tillage Management, Reduced Till	345	Acre	Moderate Improvement	Less erosion and runoff reduce the transport of sediment.
Road/Trail/Landing Closure and Treatment	654	Feet	Moderate Improvement	Vegetation and other treatments reduce erosion and sediment delivery.
Silvopasture	381	Acre	Moderate Improvement	On sites that previously lacked permanent vegetation, establishing a combination of trees or shrubs and compatible forages reduces the erosive force of water and reduces sedimentation.
Stripcropping	585	Acre	Moderate Improvement	Stripcropping reduces erosion and slows water and wind velocities, increasing infiltration.
Surface Roughening	609	Acre	Moderate Improvement	The formation of clods reduces wind-borne sediment.
Tree/Shrub Establishment	612	Acre	Moderate Improvement	Vegetation provides cover, reduces wind velocities, and increases infiltration.
Wetland Wildlife Habitat Management	644	Acre	Moderate Improvement	Improved vegetative cover reduces runoff and sedimentation.
Irrigation Water Management	449	Acre	Slight to Moderate Improvement	Water is applied at rates that minimize soil erosion.

Table 7-8. Most Effective Sediment (Greater Than 10 Percent) Reducing Urban Best Management Practices From the International Best Management Practice Database

BMP Category	Concentration In (mg/L)	Concentration Out (mg/L)	Reduction (%)
High-Rate Biofiltration	30.8	3.8	88
Media Filter	44	7.2	84
Bioretention	44	10	77
Retention Pond	49	12	76
Porous Pavement	77	22	71
Detention Basin	65.1	22	66
Wetland Basin	35.5	14	61
High-Rate Media Filtration	44	18	59
Oil-Grit Separator	36	15.5	57
Grass Strip	48	23	52
Grass Swale	26	13.7	47
Hydrodynamic Separator	63.9	39	39

mg/L = milligrams per liter

Table 7-9. Most Effective Nutrient to Surface Water Reducing Agricultural Best Management Practices From the Colorado Natural Resources Conservation Service Conservation Practice Physical Effects (Page 1 of 2)

Practice	Practice Code	Unit	Effect	Rationale
Filter Strip	393	Acre	Substantial Improvement	Solid organics and sediment-attached nutrients are filtered out; soluble nutrients infiltrate the soil and may be taken up by plants or used by soil organisms.
Nutrient Management	590	Acre	Substantial Improvement	The right amount, source, placement, and timing (4Rs) provide nutrients when plants need them most.
Riparian Forest Buffer	391	Acre	Substantial Improvement	Plants and soil organisms in the buffer will use nutrients; the buffer will filter out suspended particles to which nutrients are attached.
Riparian Herbaceous Cover	390	Acre	Substantial Improvement	Permanent vegetation will uptake excess nutrients.
Saturated Buffer	604	Feet	Substantial Improvement	The buffer removes 60-100% of nitrogen from drain pipe discharge.
Sediment Basin	350	N/A	Substantial Improvement	The action will tend to accumulate contaminants attached to sediments, and infiltrating waters will remove soluble contaminants.
Conservation Cover	327	Acre	Moderate to Substantial Improvement	Less erosion and runoff reduce the transport of nutrients; permanent cover can take up excess nutrients and convert them to stable organic forms.
Constructed Wetland	656	Acre	Moderate to Substantial Improvement	The action traps nutrients and organics, which are broken down and used by wetland plants.
Short-Term Storage of Animal Waste and Byproducts	318	Cu. Yard	Moderate to Substantial Improvement	Short-term storage provides flexibility in rate, timing, and location of waste application, with the potential for reductions of contaminants available for transport.
Vegetated Treatment Area	635	Acre	Moderate to Substantial Improvement	Infiltration and plant uptake in the treatment area will remove contaminants from polluted runoff and wastewater.
Waste Storage Facility	313	#	Moderate to Substantial Improvement	Storage provides flexibility in rate, timing, and location of waste application, with the potential for reductions of contaminants available for transport.
Waste Treatment Lagoon	359	#	Moderate to Substantial Improvement	Storage provides flexibility in rate, timing, and location of waste application, with the potential for reductions of contaminants available for transport.
Watering Facility	614	#	Moderate to Substantial Improvement	When used in place of an instream water source, this action decreases manure deposition in the stream.
Alley Cropping	311	Acre	Moderate Improvement	Plants and soil organisms uptake nutrients.
Conservation Crop Rotation	328	Acre	Moderate Improvement	Nitrogen-demanding or deep-rooted crops can remove excess nitrogen; legumes in rotation will provide slow-release nitrogen and reduce the need for additional nitrogen.
Denitrifying Bioreactor	605	#	Moderate Improvement	Reactors remove 30 to 60% of the nitrogen load coming from a drain pipe.
Diversion	362	Feet	Moderate Improvement	The action diverts surface water away from feedlots and reduces 5-day Biological Oxygen Demand (BOD5); total phosphorous and total nitrogen load to receiving surface waters.

Table 7-9. Most Effective Nutrient to Surface Water Reducing Agricultural Best Management Practices From the Colorado Natural Resources Conservation Service Conservation Practice Physical Effects (Page 2 of 2)

Practice	Practice Code	Unit	Effect	Rationale
Grazing Land Mechanical Treatment	548	Acre	Moderate Improvement	Modifications to soil conditions will increase infiltration and reduce runoff; improved plant growth will better use nutrients, decreasing the potential for losses in runoff.
Livestock Shelter Structure	576	#	Moderate Improvement	Moving livestock away from streams and riparian areas will decrease the probability of excess manure nutrients in the water.
Silvopasture	381	Acre	Moderate Improvement	Depending on previous vegetative conditions, whether forestland or pasture, the permanent silvopasture vegetation may take up comparatively greater amounts of nutrients.
Wetland Creation	658	Acre	Moderate Improvement	Wetland systems will use dissolved nutrients and trap sediment-attached nutrients and organics.
Wetland Enhancement	659	Acre	Moderate Improvement	Wetland systems will use dissolved nutrients and trap sediment-attached nutrients and organics.
Wetland Restoration	657	Acre	Moderate Improvement	Wetland systems will use dissolved nutrients and trap sediment-attached nutrients and organics.
Irrigation Water Management	449	Acre	Slight to Moderate Improvement	Water is applied at rates that reduce the potential for erosion and detachment, and minimize nutrient transport to surface water.

Table 7-10. Most Effective Nitrogen (Greater Than 10 Percent) Reducing Urban Best Management Practices From the International Best Management Practice Database

BMP Category	Concentration In (mg/L)	Concentration Out (mg/L)	Reduction (%)
High-Rate Media Filtration	1.88	1	47
Retention Pond	1.63	1.2	26
Bioretention	1.26	0.96	24
Wetland Channel	1.76	1.45	18
Media Filter	1.06	0.89	16
Grass Strip	1.47	1.27	14
Grass Swale	0.71	0.63	11

Table 7-11. Most Effective Phosphorus (Greater Than 10 Percent) Reducing Urban Best
Management Practices From the International Best Management Practice Database

BMP Category	Concentration In (mg/L)	Concentration Out (mg/L)	Reduction (%)
Oil-Grit Separator	0.316	0.115	64
Retention Pond	0.246	0.12	51
High-Rate Biofiltration	0.099	0.05	49
Media Filter	0.165	0.09	45
Porous Pavement	0.17	0.1	41
High-Rate Media Filtration	0.12	0.08	33
Wetland Basin	0.17	0.122	28
Detention Basin	0.25	0.186	26
Hydrodynamic Separator	0.23	0.176	23

Practices associated with reducing wildfire impacts include susceptibility and post-fire hazard analyses and pre-disaster planning and mitigation. The susceptibility analysis includes determining the assets at risk from fire and the risk severity of post-fire impacts, such as flooding, loss of life, loss of property, damage to infrastructure, utility interruptions, and water quality and quantity issues. Post-fire hazards consist of flooding, sediment/hillslope erosion, debris flow, fluvial hazard zones, water quality issues, and risk to water infrastructure. Post-fire BMPs should involve slope stabilization and reforestation.

7.2 E. COLI

E. coli load reductions from BMPs are ranked in the NRCS CPPE as substantial, moderate to substantial, moderate, slight to moderate, and slight. Table 7-12 lists the most effective practices (i.e., substantial, moderate to substantial, and moderate reductions) [NRCS, 2024b]. *E. coli* reductions expected from the International BMPDB's urban practices are summarized in Table 7-13 [The Water Research Foundation, 2024]. Unlike the sediment and nutrient reductions, *E. coli* reductions are not quantified using the PLET model; therefore, priority BMPs should be those with the highest amount of reduction in the priority areas on the relative land cover. The NRCS Irrigation Water Management practice code Number 449 has slight to moderate improvement for bacteria, and it was included in Table 7-12 because of its high probability of installation. Practices with slight to moderate improvement should not be discouraged, even though they are not included in the tables in this section.

Table 7-12. Most Effective Bacteria (Pathogen) to Surface Water Reducing Agricultural Best Management Practices From the Colorado Natural Resources Conservation Service Conservation Practice Physical Effects

Practice	Practice Code	Unit	Effect	Rationale
Vegetated Treatment Area	635	Acre	Substantial Improvement	Infiltration and plant uptake in the treatment area will remove contaminants from polluted runoff and wastewater.
Constructed Wetland	656	Acre	Moderate to Substantial Improvement	Pathogens are trapped in the wetland.
Filter Strip	393	Acre	Moderate to Substantial Improvement	Filter strips capture and delay pathogen movement, but mortality may also be delayed because vegetative cover may protect pathogens from desiccation.
Nutrient Management	590	Acre	Moderate to Substantial Improvement	Proper application of manure, compost, and biosolids should reduce or eliminate pathogens and/or chemicals (if present in source material) from moving into surface water.
Waste Treatment Lagoon	359	N/A	Moderate to Substantial Improvement	Storage provides flexibility in rate, timing, and location of waste application, with the potential for reductions of contaminants available for transport.
Alley Cropping	311	Acre	Moderate Improvement	Ground vegetation captures and delays pathogen movement and thereby increases their mortality.
Forest Farming	379	Acre	Moderate Improvement	Management of multi-layered canopy cover and organic matter impedes the movement of harmful pathogens.
Land Reclamation, Abandoned Mined Land	543	Acre	Moderate Improvement	Reconstructed mine land provides reduced runoff and erosion, and the filtering effects of vegetation reduce the risk of harmful levels of pathogens entering surface water.
Land Reclamation, Currently Mined Land	544	Acre	Moderate Improvement	Reconstructed mine land provides reduced runoff and erosion, and the filtering effects of vegetation reduce the risk of harmful levels of pathogens entering surface water.
Riparian Forest Buffer	391	Acre	Moderate Improvement	Riparian areas capture and delay pathogen movement and thereby increase their mortality.
Riparian Herbaceous Cover	390	Acre	Moderate Improvement	Vegetation traps pathogens providing increased opportunity for solar and microbial action to destroy some.
Irrigation Water Management	449	Acre	Slight to Moderate Improvement	Water is applied at rates that minimize pathogens transport to surface water.

Table 7-13. Most Effective *E. coli* (Greater Than 10 Percent) Reducing Urban Best Management Practices From the International Best Management Practice Database

BMP Category	Concentration In (mpn/100 mL)	Concentration Out (mpn/100 mL)	Reduction (%)
Wetland Basin	6,210	884	86
Retention Pond	4,110	708	83
Media Filter	570	215	62
Detention Basin	900	500	44
Bioretention	275	158	43
Hydrodynamic Separator	2,400	1,700	29

7.3 HEAVY METALS

Several risks are associated with abandoned mines. To prioritize public safety, specific locations of abandoned mines are not disclosed; however, taking action to mitigate potential dangers is important. The efforts of groups like Defense-Related Uranium Mines (DRUMs) are crucial in sealing off dangerous openings, identifying hazards, and implementing safety measures to protect the public and environment. This approach balances transparency with the need to safeguard communities from potential harm and is more focused on water quality and heavy-metal-impaired waterbodies. When waters are exposed to rocks containing sulfide minerals, they tend to become acid-rich. This occurrence is called acid rock drainage and is prevalent in mined areas where spent materials were left unclaimed. When the waters become acidic, they are more capable of gathering up and carrying heavy metals, including those that impair the waterbodies on the 303(d) list within the project area.

The AML implementation should be guided by the NRCS Code 543 practices. The NRCS Conservation Practice Standard (CPS) states the following options for land reclamation of AML [NRCS, 2024c]:

Public health and safety: Prior to beginning onsite investigations, identify possible hazards and implement appropriate safety precautions.

Erosion and sediment control practices: Control or treat runoff and sedimentation from treatment areas, soil material stockpiles, access roads, and permanent impoundments. Use sediment-trapping practices, such as filter strips, riparian forest buffers, contour buffer strips, silt fences, sediment basins, or similar practices. Include temporary practices necessary during earth moving activities and permanent practices necessary to stabilize the site and control runoff from the site after reclamation.

Control the generation of particulate matter and fugitive dust during removal and replacement of soil and other materials.

Site preparation: Identify areas for preservation during construction. Include areas containing desirable trees, shrubs, grasses, stream corridors, natural springs, historic structures, or other important features that will be protected during construction activities.

Remove trees, logs, brush, rubbish, and other debris that interfere with reclamation operations.

Dispose of debris material in a way that does not create a resource problem or interfere with reclamation activities and the planned land use.

Storage of soil materials: Stockpile soil or fill materials until needed for reclamation. Protect stockpiles from wind and water erosion, dust generation, unnecessary compaction, and contamination by noxious weeds, invasive species, or other undesirable materials.

Highwall treatment: Prior to backfilling, rock walls should have horizontal:vertical slopes of 0.5:1 or less. before placing backfill against the wall. Determine the thickness and density of lifts for fill material to limit the deep infiltration of precipitation and to limit settlement of the completed fill to acceptable levels, based on the available fill material and planned land use.

Shafts and adits: Use NRCS Conservation Practice Standard (CPS) Mine Shaft and Adit Closing (Code 457) to close/seal a shaft or adit. Divert runoff away from the shaft or adit.

Placement of surface material: Develop a grading plan that returns the site, including any off-site borrow areas, to contours that are suitable for the planned land use and control soil loss. Include the spreading of stockpiled topsoil material as the final layer. Treat graded areas to eliminate slippage surfaces and promote root penetration before spreading surface material. Spread surface soil without causing over-compaction.

Shape the land surface to provide adequate surface drainage and to blend into the surrounding topography. Use erosion control practices to reduce slope lengths where sheet and rill erosion exceeds acceptable levels. If settlement is likely to interfere with the planned land use, develop surface drainage or water disposal plans that compensate for the expected settlement.

If the subsurface material is not a source of contamination, improve soil permeability after placing backfill material by using deep ripping tools to decrease compaction, promote infiltration, and encourage root development. Do not plan practices that promote infiltration if seepage through cover materials has the potential to develop or exacerbate acid mine drainage loading or treatment.

Restoration of borrow material: If cover or fill material is taken from areas outside the reclamation site, stockpile the topsoil from the borrow area separately, and replace it on the borrow area after the area is restored for its intended purpose. Grade and shape the borrow area for proper drainage, and revegetate the site to control erosion.

Establishment of vegetation: Prepare a revegetation plan for the treated areas. Select plant materials suitable for the specified end land use according to local climate potential, site conditions, and local NRCS criteria. Use native species where possible. Avoid use of invasive species.

Use the criteria in NRCS CPS Critical Area Planting (Code 342) to establish grasses and forbs. Use NRCS CPS Tree-Shrub Establishment (Code 612) for the establishment of trees and shrubs. If vegetation cannot be established, use NRCS CPS Mulching (Code 484).

Control of toxic aqueous discharge: Identify and document water quality and quantity and releases from seeps, overland, and mine shafts. Quantify water impacts such as low pH, arsenic, etc. Identify measures that may affect treatment such as dissolved oxygen, iron, aluminum, magnesium, manganese, etc.

Methods for treatment of toxic aqueous discharge depend upon the type and extent of the contamination. When control of toxic mine drainage is needed, use BMPs that comply with state regulatory requirements. Evaluate the consequences of each potential treatment method to avoid creating a secondary problem. Select a method that can adequately treat the water based on the quantity and chemistry of the mine water and that is suitable for the planned level of operation and maintenance. Size the treatment area and settling basin(s) to allow for the volume of flow and treatment rate. Include a plan for disposal of the precipitated metals and spent treatment material.

Reduce the volume of contaminated water by diverting clean water away from the contaminated area or by limiting the opportunity for water to contact contaminated soil materials. Install practices, such as diversions, underground outlets, lined waterways, or grade stabilization structures, to control surface runoff. To the extent possible, divert clean upslope runoff away from the treated area.

- Contaminated soil materials: Remove, bury, or treat soil materials that adversely affect or have the potential to adversely affect water quality or plant growth. Bury materials containing heavy metals below the root zone, add suitable soil amendments, or both, to minimize the negative effect of this material. Separate soils with high electrical conductivity, calcium carbonate, sodium, or other restrictive properties, and treat, if practicable.
- / Add a layer of compacted clay or a landfill cover over the contaminated material to deter infiltration. Place an earthfill blanket over the compacted clay to support plant growth. For each layer, identify the lift thickness and density needed to limit deep infiltration of precipitation and excessive settlement of the completed fill.
- / Mine sealing: If clean water is entering a mine opening, divert the water away. If contaminated water is exiting the mine, it may be necessary to seal the mine to prevent water movement. Use NRCS CPS Mine Shaft and Adit Closing (Code 457) to design the mine seal. Divert surface water away from the mine seal.
- Neutralization and precipitation: Precipitate toxic metals and neutralize acidity in mine drainage using chemical or biological treatment. Select a method that can adequately treat the water based on the quantity and chemistry of the mine water and that is suitable for the planned level of operation and maintenance. Size the treatment area and settling basin(s) to allow for the volume of flow and treatment rate. Include a plan for disposal of the precipitated metals and spent treatment material.

Aside from AMLs, heavy metals also come from agricultural lands and urbanized areas. Heavy metal load reductions from BMPs are ranked in the NRCS CPPE as substantial, moderate to substantial, moderate, slight to moderate, and slight. Table 7-14 lists the most effective practices (i.e., substantial,

moderate to substantial, and moderate reductions) [NRCS, 2024b]. Heavy metal reductions expected from the BMPDB's urban practices are summarized in Table 7-15 [The Water Research Foundation, 2024]. Heavy metal reductions are not quantified using the PLET model; therefore, priority BMPs should be those with the highest amount of reduction in the priority areas on the relative land cover. The NRCS Irrigation Water Management practice code Number 449 has slight to moderate improvement for heavy metals. Irrigation management is the only NRCS practice included with less than moderate improvement. It was included because of its high probability of installation in the project area. Practices with slight to moderate improvement should not be discouraged, even though they are not included in the tables in this section.

Table 7-14. Most Effective Heavy Metals to Surface Water Reducing Agricultural Best Management Practices From the Colorado Natural Resources Conservation Service Conservation Practice Physical Effects

Practice	Practice Code	Unit	Effect	Rationale
On-Farm Secondary Containment Facility	319	N/A	Substantial Improvement	Provides for spill containment of petroleum products.
Constructed Wetland	656	Acre	Moderate to Substantial Improvement	Vegetation and anaerobic conditions trap heavy metals.
Irrigation and Drainage Tailwater Recovery	447	N/A	Moderate to Substantial Improvement	The action captures irrigation and/or drainage runoff and associated metal-laden sediment.
Land Reclamation, Landslide Treatment	453	N/A	Moderate to Substantial Improvement	Increased vegetation increases infiltration and reduces runoff and erosion.
Land Reclamation, Toxic Discharge Control	455	N/A	Moderate to Substantial Improvement	Control of discharge and reduction in infiltration reduce off-site movement of contaminated water.
Riparian Forest Buffer	391	Acre	Moderate Improvement	The action filters sediment, and some plants may uptake heavy metals.
Road/Trail/Landing Closure and Treatment	654	Feet	Moderate Improvement	Decreased erosion and runoff reduce heavy metal delivery to surface water; increased soil organic matter increases the capacity of soils to retain heavy metals; permanent vegetation can uptake heavy metals.
Irrigation Water Management	449	Acre	Slight to Moderate Improvement	Water is applied at rates that minimize heavy metals transport to surface water.

Table 7-15. Most Effective Heavy Metal (Greater Than 10 Percent) Reducing Urban Best Management Practices From the International Best Management Practice Database

Category	BMP Category	Concentration In (µg/L)	Concentration Out (µg/L)	Reduction (%)
Arsenic (T)	Media Filter	0.9	0.765	15
Arsenic (T)	Retention Pond	1	0.87	13
Arsenic (T)	Grass Swale	1.11	1	10
Cadmium (D)	Grass Swale	0.2	0.116	42
Cadmium (D)	Grass Strip	0.114	0.07	39
Cadmium (D)	Media Filter	0.2	0.128	36
Cadmium (D)	Oil-Grit Separator	0.155	0.101	35
Cadmium (D)	Hydrodynamic Separator	0.137	0.0933	32
Cadmium (D)	Retention Pond	0.163	0.125	23
Cadmium (D)	Detention Basin	0.117	0.0942	19
Copper (D)	Wetland Basin	3.95	2.29	42
Copper (D)	Grass Strip	12	7.4	38
Copper (D)	Retention Pond	5.08	3.5	31
Copper (D)	Detention Basin	3.96	2.99	24
Copper (D)	High-Rate Biofiltration	4.5	3.4	24
Copper (D)	Media Filter	3.86	3	22
Copper (D)	Grass Swale	6.5	5.63	13
Iron (T)	Retention Pond	1050	285	73
Iron (T)	Media Filter	685	195	72
Iron (T)	Grass Strip	746	320	57
Iron (T)	Grass Swale	216	136	37
Zinc (D)	Media Filter	32	7.15	78
Zinc (D)	Porous Pavement	17.8	4.09	77
Zinc (D)	Wetland Basin	22.6	8.35	63
Zinc (D)	High-Rate Biofiltration	189	79	58
Zinc (D)	Grass Strip	33.6	17	49
Zinc (D)	Grass Swale	34.2	19.8	42
Zinc (D)	Bioretention	20.8	12.5	40
Zinc (D)	Retention Pond	23.4	16	32
Zinc (D)	Detention Basin	12.1	9.38	22

μg/L = micrograms per liter

D = dissolved

T = total

8.0 PAST AND CURRENT BEST MANAGEMENT PRACTICES

A significant amount of BMPs have been, and are currently being, implemented in the Big Thompson River HUC8 Watershed. Based on Survey #2 provided to the stakeholders, the following BMPs have been or are being implemented in the Big Thompson River Watershed project area:

- / Conservation tillage
- / Crop rotation
- / No-till practices
- / Rain gardens
- / Splitter drop structures
- / Streambank stabilization
- / Wetland construction
- / Wetland protection
- / Construction BMPs
- / Streamside fencing to exclude livestock
- / Vegetated buffer strips

The surveys also provided planned, near-future projects (including continuation of existing programs) and a pilot program to use water treatment residuals as filter media in bioretention basins to sequester phosphorus from stormwater runoff.

Although this list includes some of the implementation accomplishments within the project area, it does not include all the BMPs that have been or are currently being implemented.

Practices implemented by watershed and/or county were not available from the NRCS; however, they were available for the State of Colorado. An assumption was made that the more likely a practice is to be implemented in Colorado, the more likely it would be implemented in the project area. Funding sources and programs involved in implementing practices in Colorado include the Agricultural Conservation Easement Program (ACEP), Agricultural Water Enhancement Program (AWEP) Conservation Reserve Program (CRP), Conservation Stewardship Program (CSP), Conservation Technical Assistance (CTA), Emergency Watershed Protection Program (EWP), Environmental Quality Incentives Program (EQIP), Farm and Ranch Lands Protection Program (FRPP), Grass Reserve Program (GRP), Regional Conservation Partnership Program (RCPP), Resource Conservation and Development (RCD) Program, Watershed Protection and Flood Prevention Operations (WFPO) Program, Watershed Rehabilitation (WHRB), Wetlands Reserve Program (WRP), and Wildlife Habitat Incentive Program (WHIP). Table 8-1 lists the practices implemented on more than 50 mi² in Colorado since 2005 that should continue to be implemented for water quality improvement [USDA, 2024].

 Table 8-1. Best Management Practices Implemented Annually on More Than 50 Square Miles in Colorado Since 2005 (Page 1 of 2)

Practice Name	Practice Code	Colorado (mi²)	Associated Land Use	Percent of Associated Area	Project Area Land Use (mi ²)	Project Area Practice (Available Remaining) (mi ²)
Prescribed Grazing	528	1,169	Pasture	100	8.7	-
Upland Wildlife Habitat Management	645	433	Pasture	38	8.7	3.3
Conservation Crop Rotation	328	287	Cropland	2	90.2	2.1
Watering Facility	614	286	Pasture	25	8.7	2.2
Livestock Pipeline	516	210	Pasture	18	8.7	1.6
Fence	382	194	Pasture	17	8.7	1.5
Pest Management Conservation System	595	180	Cropland	1	90.2	1.3
Conservation Cover	327	154	Cropland	1	90.2	1.1
Access Control	472	154	Pasture	13	8.7	1.2
Nutrient Management	590	134	Cropland	1	90.2	1.0
Pumping Plant	533	121	Cropland	1	90.2	0.9
Brush Management	314	118	Forest	<1	342.6	0.8
Residue and Tillage Management, Reduced Till	345	104	Cropland	<1	90.2	0.7
Residue and Tillage Management, No Till	329	99	Cropland	<1	90.2	0.7
Irrigation Water Management	449	98	Cropland	<1	90.2	0.7
Residue Management, Seasonal	344	85	Cropland	<1	90.2	0.6
Prescribed Grazing - Enhancements	E528	81	Pasture	7	8.7	0.6
Early Successional Habitat Development - Management	647	72	Other	<1	270.4	0.6
Pest Management Conservation System - Enhancements	E595	68	Cropland	<1	90.2	0.5
Herbaceous Weed Treatment	315	66	Cropland	<1	90.2	0.5
Nutrient Management - Enhancements	E590	57	Cropland	<1	90.2	0.4
Water Well	642	55	Cropland	<1	90.2	0.4

Table 8-1. Best Management Practices Implemented Annually on More Than 50 Square Miles in Colorado Since 2005 (Page 2 of 2)

Practice Name	Practice Code	Colorado (mi²)	Associated Land Use	Percent of Associated Area	Project Area Land Use (mi ²)	Project Area Practice (Available Remaining) (mi ²)
Range Planting	550	51	Pasture	4	8.7	0.4
Cover Crop	340	49	Cropland	<1	90.2	0.4
Forage Harvest Management	511	47	Forest	<1	342.6	0.3
Structure for Water Control	587	33	Cropland	<1	90.2	0.2
Irrigation Pipeline	430	30	Cropland	<1	90.2	0.2
Forest Stand Improvement	666	27	Forest	<1	342.6	0.2

9.0 RECOMMENDED BEST MANAGEMENT PRACTICES

This watershed-based plan provides recommendations for NPS implementation practices to reduce loads of pollutants of concern. The recommended implementation practices are based on practices that are the most likely to be implemented and most impactful in reducing pollutants of concern.

9.1 FUTURE MUNICIPAL SEPARATE STORM SEWER SYSTEM AREAS

Stormwater resulting from rainfall, snowmelt, or other surface water runoff and drainage originates from impervious areas in towns; cities; residential developments; and industrial, manufacturing, or agricultural facilities. Stormwater flows accumulate from streets, parking lots, rooftops, catch basins, curbs, gutters, ditches, drainage channels, storm drains, and other impervious surfaces that may play a role in the contribution of pollutant loading because of the proximity of these impervious areas to the impaired waterbodies. Stormwater discharges are permitted under numerous MS4 permits in Colorado, which include the statewide standard MS4 general permit (COR090000) and statewide nonstandard MS4 general permit (COR070000). Areas covered by MS4 permits are not considered NPSs.

The Town of Johnstown (approximately 7.5 mi² acres) is within the Big Thompson River HUC8 and has not yet been designated as an MS4; however, this town is one of the areas identified to become one within the near future (5 to 15 years). Johnston was identified using the same sources as in Section 5.1 [Catena Analytics, 2024; U.S. Census Bureau, 2020; Smith, 2024]. Therefore, the town's decisionmakers should be proactive by using development practices that will minimally impact water quality. Less effort will be needed to retrofit BMPs after the area becomes a designated MS4 if more implementation is completed upfront. Low Impact Development (LID) is an approach to stormwater management that mimics a site's natural hydrology while the landscape is developed and preserves and protects environmentally sensitive site features, such as riparian buffers, wetlands, steep slopes, valuable (mature) trees, floodplains, woodlands, and highly permeable soils. Minimal Impact Design Standards (MIDS) is a new concept being used in the state of Minnesota, which emphasizes keeping a raindrop where it falls to minimize stormwater runoff and pollution as well as preserve natural resources. Because Minnesota has been successful in implementing water quality practices using MIDS, developing communities in the North Front Range Water Quality Planning Association (NFRWQPA) watersheds would likely also benefit from evaluation of the following four main elements of MIDS [Minnesota Pollution Control Agency, 2024]:

- Stormwater volume performance goals for new development, redevelopment, and linear projects
- / New credit calculations that standardize the use of a range of structural stormwater techniques
- / Design specifications for a variety of green infrastructure BMPs
- / An ordinance guidance package to help developers and communities implement MIDS

9.2 DEVELOPED

Throughout the Big Thompson River project area, approximately 44 mi² of non-MS4 developed land exist. MS4 areas are not represented in the project models. BMPs recommended for MS4 and non-MS4

developed areas are like those outlined in Section 9.1. For nutrients and sediment, priority developed practices from PLET (Table 7-5) should be those with the highest rankings and reduction scores (i.e., extended wet detention, infiltration basins, and concrete gird pavement). For *E. coli*, priority developed practices should be those resulting in the largest reductions within the BMPDB (i.e., wetland basin and retention pond), as shown in Table 7-13. For heavy metals, priority developed practices should also be practices that resulted in the largest reductions of heavy metals in the BMPDB (depending on pollutants of concern in downstream waterbodies), as shown in Table 7-15. Practices do not need to be limited to these recommendations, and any practice that reduces pollutants of concern can be considered.

9.3 AGRICULTURAL (CROPLAND, PASTURELAND, AND FEEDLOT BEST MANAGEMENT PRACTICES)

Throughout the Big Thompson River project area, approximately 90 mi² of cropland exist and are all within the easternmost watersheds. Similarly, approximately 9 mi² of pastureland exist, primarily in the easternmost HUC8 watersheds. Less than 1 mi² consists of feedlots. For sediment and nutrients, priority agricultural practices from PLET (Tables 7-1 through 7-3) should be those with the highest rankings and reduction scores (i.e., streambank stabilization and fencing and 35-foot grass buffers for cropland, 35-foot grass buffers and livestock exclusion fencing for pasture, and waste management systems for feedlots). For E. coli, priority agricultural practices should be the most effective agricultural BMPs from the Colorado NRCS CPPE for reducing E. coli (i.e., vegetated treatment area, constructed wetland, filter strip, nutrient management, and waste treatment lagoon) as shown in Table 7-12. For heavy metals, priority agricultural practices should be the most effective agricultural BMPs from the Colorado NRCS CPPE for reducing heavy metals (i.e., on-farm secondary containment facility, constructed wetland, irrigation and drainage tailwater recovery, land reclamation (landslide treatment or toxic discharge control) as shown in Table 7-14. Additionally, practices that switch from flood irrigation to more efficient irrigation methods would be beneficial in reducing both E. coli and heavy metals such as selenium and arsenic. Although these practices are the most effective, BMPs do not need to be limited to these recommendations.

9.4 FOREST

Throughout the Big Thompson River project area, approximately 499 mi² of forest land exist. Although forest land is less likely to contribute sediment, nutrients, and bacteria per acre of contributing area, BMPs are still beneficial, especially when considering historical fires, fire potential, abandoned mines, recreation, and grazing activities. For nutrients and sediment, priority forest practices from PLET (Table 7-4) should be those with the highest ranking and reduction scores (i.e., a combination of site preparation/straw/crimp seed/net/fertilizer/transplants). For *E. coli*, priority forest practices are not prioritized but should include those that exclude forest-grazing livestock from accessing streams and septic assessments. Forest practices should also focus on pre- and post-fire activities outlined in the Big Thompson Wildfire Ready Action Plan, which will be completed in 2025 and will be available on the Peaks to People Water Fund's website.

9.5 ABANDONED MINE LANDS

Most AMLs in the watershed have not yet been identified because several are located on private land or in very remote locations. The primary practice completed on identified AMLs is to seal off dangerous openings, identify hazards, and implement safety measures to protect the public and environment. To improve water quality, identifying AMLs should become a higher priority. Although AML BMPs are not prioritized because of the variable nature of AML lands, each site should be assessed, and practices should be chosen that target specific issues related to each site. For heavy metals, priority practices should focus on AMLs, as outlined in Section 7.3.

10.0 INFORMATION, EDUCATION, AND OUTREACH

Current communication, education, and outreach efforts established in the Big Thompson River HUC8 should continue and be expanded to incorporate effectiveness and user feedback surveys that would complement current area outreach programs. Coordinated outreach efforts should increase the awareness of specific audiences regarding water quality problems and solutions, as well as available BMP technical and financial assistance programs for urban/residential areas, cropland, pasture lands, AMLs, and riparian areas. Stakeholders should continue to expand on their public outreach efforts and communications with the public by implementing inclusive and new engagement tactics to reach a broad audience. Education and outreach activities should target individuals and groups to evaluate effective outreach methods.

Stakeholder responses to Survey #2 were used to rank a list of information, education, and outreach options. The following survey ranking is from highest to lowest:

- 1. Water Quality Awareness Signage in Parks by Streams
- 2. Social Media Posts (Sent to Partners)
- 3. Website Updates
- 4. Educational Campaigns
- 5. Newsletters and Mailers
- 6. Pet-Waste Pickup Stations
- 7. Volunteer Cleanup Programs
- 8. School Visits
- 9. Project Story Map
- 10. Report a Concern Website
- 11. Radio Advertisements and Interviews
- 12. Tours and Field Trips

Entities within the watershed that are interested in collaborating with other stakeholder groups and hosting or participating in events include the Northern Colorado Water Conservancy District, Los Rios Farm, Colorado Watershed Assembly, Colorado Wheat Administrative Committee, and Estes Valley Watershed Coalition. Participating in existing events can also expand outreach efforts. Northern Water has an annual water quality efficiency stakeholder meeting in the spring, as well as a spring and fall water symposium and a children's water festival. Each fall, a Sustaining Colorado Watersheds conference is held in Avon, Colorado. A Lower South Platte River Water Festival is also held for children in the community.

The NFRWQPA is compiling a "Stakeholder Toolkit" for the plans. This toolkit will help stakeholders reach, inform, and partner with their networks on the NPS watershed educational resources. Some of the options included in the toolkit include digital communications, print communications, and community outreach. The stakeholders will decide which tools will be chosen during the next round of

funding. Examples of these and more information about the Stakeholder Toolkit are included in Appendix E.

11.0 CRITERIA TO ASSESS PROGRESS

Milestones toward progress can be demonstrated in many different ways. In these watersheds, options for measurable milestones can include progress toward meeting water quality criteria set by the state, trends toward improvement, and progress in the installation of implementation practices that are expected to improve water quality parameters of concern. Table 11-1 shows practices that could be implemented to make progress and count as measurable milestones. Because goals in this watershed for this plan are very broad (the plan is not being written as a part of a specific Total Maximum Daily Load [TMDL] with a specified goal), milestones are more general than specific. Any practice implemented will be a part of progress toward the ultimate goal of improving water quality and ensuring water quality does not worsen. Relative implementation should be tracked, and this plan should be revisited after the first 5 years to ensure progress is being made. NFRWQPA will track any implementation that occurs as they are informed of it. Stakeholders will be informed of progress via methods chosen from the Stakeholder Toolkit. Reductions from NPS loadings will most likely require a significant, increased amount of technical and financial program assistance; BMP implementation through on-the-ground projects; proper watershed planning; and cooperation with willing landowners and land management agencies. Successfully achieving load reductions depends on several factors, such as the amount of voluntary participation, availability of technical and financial assistance, and effectiveness of BMPs intended to reduce applicable loads.

In Survey #2, organizations were asked about interim measurable criteria/goals and what progress would look like after 5 and 10 years. Los Rios Farm stated that preserving open space, reducing development near waterways, and increasing flows during irrigation season would demonstrate progress. The Colorado Wheat Administrative Committee advised that monitoring water quality, reducing pollutants of concern loads, and meeting water quality criteria would display progress.

An implementation schedule is recommended to reduce pollutants of concern by implementing NPS BMPs. Table 11-1 provides a list of BMPs that would be most likely to benefit the area over the next 10 years by land-use category. Tables 11-2, 11-3, and 11-4 provide the top two sources for each parameter group and the top practices for implementation.

Table 11-1. Best Management Practices (Page 1 of 2)

Land-Use Category	Source	Recommended Implementation Activity
Future Stormwater/ Developed/Urban/Residential	PLET and Survey	Extended Wet Detention Ponds
Future Stormwater/ Developed/Urban/Residential	PLET and Survey	Infiltration Basins
Future Stormwater/ Developed/Urban/Residential	PLET and Survey	Concrete Grid Pavement
Future Stormwater/ Developed/Urban/Residential	BMPDB	High-Rate Biofiltration
Future Stormwater/ Developed/Urban/Residential	BMPDB	Media Filter
Future Stormwater/ Developed/Urban/Residential	BMPDB	Oil-Grit Separator
Future Stormwater/ Developed/Urban/Residential	BMPDB	Retention Pond
Future Stormwater/ Developed/Urban/Residential	BMPDB	High-Rate Media Filtration
Future Stormwater/ Developed/Urban/Residential	BMPDB	Wetland Basin
Future Stormwater/ Developed/Urban/Residential	BMPDB	Grass Swale
Future Stormwater/ Developed/Urban/Residential	Other	LID Practices
Future Stormwater/ Developed/Urban/Residential	Other	Septic Upgrades
Ag - Cropland	PLET and Survey	Streambank Stabilization and Fencing
Ag - Cropland	PLET and Survey	Buffer - Grass (35 feet wide)
Ag - Cropland	NRCS	Constructed Wetland (656)
Ag - Cropland	NRCS	Filter Strip (393)
Ag - Cropland	NRCS	Vegetated Treatment Area (635)
Ag - Cropland	NRCS	On-Farm Secondary Containment Area (319)
Ag - Cropland	NRCS	Irrigation Water Management (449)
Ag - Pasture	PLET	Buffer - Grass (35 feet wide)
Ag - Pasture	PLET	Livestock Exclusion Fencing
Ag - Pasture	PLET and Survey	Streambank Stabilization and Fencing
Ag - Feedlot	PLET and Survey	Waste Management System
Forest	PLET and Survey	Site Preparation/ Straw/Crimp Seed/Net
Forest	PLET and Survey	Site Preparation/Straw/Crimp Seed/ Fertilizer/Transplants

Table 11-1. Best Management Practices (Page 2 of 2)

Land-Use Category	Source	Recommended Implementation Activity
AML	NRCS	Storage of Soil Materials
AML	NRCS	Placement of Surface Material
AML	NRCS	Restoration of Borrow Material
AML	NRCS	Establishment of Vegetation
AML	NRCS	Control of Toxic Aqueous Discharge
Monitoring	Other	Water Quality Sampling (base and storm events)
Monitoring	Other	Discharge Measurement (base and storm events)
Monitoring	Other	Monitor Implemented Agricultural BMP Effectiveness
Monitoring	Other	Monitor Implemented Urban BMP Effectiveness
Monitoring	Other	Monitor Implemented AML BMP Effectiveness
Outreach	Survey	Social Media Posts
Outreach	Survey	Website Updates
Outreach	Survey	Educational Campaigns
Outreach	Survey	Newsletters and Mailers
Outreach	Survey	Pet-Waste Pickup Stations
Outreach	Survey	Volunteer Cleanup Programs
Outreach	Survey	School Visits
Outreach	Survey	Project Story Map
Outreach	Survey	Report a Concern Website

 Table 11-2. Dominant Land Uses, Sources, and Priority Practices by HUC10 for Nutrients and Sediment

Watershed	Dominant Land Uses	Top Sediment Sources	Top Phosphorus Sources	Top Nitrogen Sources	Priority Practices
1019000601	Forest and	Forest and	Forest and	Forest and	 Site Preparation/Straw/Crimp
North Fork Big	Urban non-	Urban non-	Urban non-	Urban non-	Seed/Net Site Preparation/Straw/Crimp
Thompson River	MS4	MS4	MS4	MS4	Seed/Fertilizer/Transplants Extended Wet Detention Infiltration Basins
1019000602	Forest and	Urban non-	Forest and	Urban non-	 / Extended Wet Detention / Infiltration Basin / Site Preparation/Straw/Crimp
Headwaters Big	Urban non-	MS4 and	Urban non-	MS4 and	Seed/Net / Site Preparation/Straw/Crimp
Thompson River	MS4	Forest	MS4	Forest	Seed/Fertilizer/Transplants
1019000603 Buckhorn Creek	Forest and Urban non- MS4	Forest and Urban non- MS4	Forest and Urban non- MS4	Forest and Urban non- MS4	 Site Preparation/Straw/Crimp Seed/Net Site Preparation/Straw/Crimp Seed/Fertilizer/Transplants Extended Wet Detention Infiltration Basin
1019000604	Forest and	Forest and	Forest and	Forest and	 Site Preparation/Straw/Crimp
Headwaters Little	Urban non-	Urban non-	Urban non-	Urban non-	Seed/Net Site Preparation/Straw/Crimp
Thompson River	MS4	MS4	MS4	MS4	Seed/Fertilizer/Transplants Extended Wet Detention Infiltration Basin
1019000605	Cropland	Cropland and	Cropland	Cropland	 Streambank Stabilization and Fencing Buffer-Grass (35 feet wide) Extended Wet Detention Infiltration Basin
Dry Creek-Little	and Urban	Urban non-	and Urban	and Urban	
Thompson River	non-MS4	MS4	non-MS4	non-MS4	
1019000606 Outlet Big Thompson River	Forest and Cropland	Cropland and Urban non- MS4	Cropland and Urban non-MS4	Cropland and Urban non-MS4	 Streambank Stabilization and Fencing Buffer-Grass (35 feet wide) Extended Wet Detention Infiltration Basin

 Table 11-3. E. coli
 Impairment Status, Primary Sources, Associated Land Use, and Priority Practices by HUC10

Watershed	<i>E. coli</i> Impaired	Primary <i>E. coli</i> Sources	Associated Land Use (<i>E. coll</i>)	Priority Practices
1019000601 North Fork Big Thompson River	N	/ Livestock (more Cattle) / Humans (more OWTS)	/ Agricultural Land / Urban non- MS4	 Vegetated Treatment Area Constructed Wetlands Septic Upgrades Wastewater Treatment Facility Connections
1019000602 Headwaters Big Thompson River	N	Livestock (more Cattle)Humans (more WWTP)	/ Agricultural Land / Urban non- MS4	/ Vegetated Treatment Area/ Constructed Wetlands/ Wetland Basin/ Retention Pond
1019000603 Buckhorn Creek	N	/ Livestock (more Cattle) / Humans (more OWTS)	/ Agricultural Land / Urban non- MS4	 Vegetated Treatment Area Constructed Wetlands Septic Upgrades Wastewater Treatment Facility Connections
1019000604 Headwaters Little Thompson River	N	/ Livestock (more Cattle) / Humans (more OWTS)	/ Agricultural Land / Urban non- MS4	 Vegetated Treatment Area Constructed Wetlands Septic Upgrades Wastewater Treatment Facility Connections
1019000605 Dry Creek-Little Thompson River	Y	Livestock (more Cattle)Humans (more WWTP)	/ Agricultural Land / Urban non- MS4	/ Vegetated Treatment Area/ Constructed Wetlands/ Wetland Basin/ Retention Pond
1019000606 Outlet Big Thompson River	Υ	/ Humans (more WWTP)/ Livestock (more Cattle)	/ Urban non- MS4/ Agricultural Land	/ Wetland Basin/ Retention Pond/ Vegetated Treatment Area/ Constructed Wetlands

Table 11-4. Dominant Land Uses, Metal Impairments, Associated Causes, and Priority Practices by HUC10 (Page 1 of 2)

Watershed	Dominant Land Uses	Metal Impairments	Associated Cause	Priority Practices
1019000601 North Fork Big Thompson River	Forest and Urban non-MS4	Arsenic	Pressure-Treated Wood, Material Production, Pierre Shale, etc.	Irrigation Water Management
1019000601 North Fork Big Thompson River	Forest and Urban non-MS4	Copper	Algicide, Manufacturing Processes, Material Production/Preservation	Discontinue Use
1019000601 North Fork Big Thompson River	Forest and Urban non-MS4	Mercury	Chemistry, Manufacturing Processes, and Material Production	AML BMPs
1019000601 North Fork Big Thompson River	Forest and Urban non-MS4	Zinc	Mining, Material Production	AML BMPs
1019000602 Headwaters Big Thompson River	Forest and Urban non-MS4	Arsenic	Pressure-Treated Wood, Material Production, Pierre Shale, etc.	Irrigation Water Management
1019000602 Headwaters Big Thompson River	Forest and Urban non-MS4	Copper	Algicide, Manufacturing Processes, Material Production/Preservation	Discontinue Use
1019000602 Headwaters Big Thompson River	Forest and Urban non-MS4	Lead	Material Production, Manufacturing Processes, Gas Combustion	Discontinue Use
1019000602 Headwaters Big Thompson River	Forest and Urban non-MS4	Mercury	Chemistry, Manufacturing Processes, and Material Production	AML BMPs
1019000602 Headwaters Big Thompson River	Forest and Urban non-MS4	Zinc	Mining, Material Production	AML BMPs
1019000603 Buckhorn Creek	Forest and Urban non-MS4	Arsenic	Pressure-Treated Wood, Material Production, Pierre Shale, etc.	Irrigation Water Management
1019000603 Buckhorn Creek	Forest and Urban non-MS4	Mercury	Chemistry, Manufacturing Processes, and Material Production	AML BMPs
1019000603 Buckhorn Creek	Forest and Urban non-MS4	Selenium	Material Production, Manufacturing Processes, Gas Combustion, Pierre Shale	Irrigation Water Management
1019000604 Headwaters Little Thompson River	Forest and Urban non-MS4	Arsenic	Pressure-Treated Wood, Material Production, Pierre Shale, etc.	Irrigation Water Management

Table 11-4. Dominant Land Uses, Metal Impairments, Associated Causes, and Priority Practices by HUC10 (Page 2 of 2)

Watershed	Dominant Land Uses	Metal Impairments	Associated Cause	Priority Practices
1019000605 Dry Creek-Little Thompson River	Cropland and Urban non-MS4	Arsenic	Pressure-Treated Wood, Pesticides, Piere Shale	Irrigation Water Management
1019000605 Dry Creek-Little Thompson River	Cropland and Urban non-MS4	Manganese	Manufacturing Processes, Material Production	AML BMPs
1019000605 Dry Creek-Little Thompson River	Cropland and Urban non-MS4	Selenium	Material Production, Manufacturing Processes, Gas Combustion, Pierre Shale	Irrigation Water Management
1019000606 Outlet Big Thompson River	Forest and Cropland	Arsenic	Pressure-Treated Wood, Material Production, Pierre Shale, etc.	Irrigation Water Management
1019000606 Outlet Big Thompson River	Forest and Cropland	Copper	Algicide, Manufacturing Processes, Material Production/Preservation	Discontinue Use
1019000606 Outlet Big Thompson River	Forest and Cropland	Iron	Mining, Manufacturing Processes, Material Production	AML BMPs
1019000606 Outlet Big Thompson River	Forest and Cropland	Manganese	Manufacturing Processes, Material Production	AML BMPs
1019000606 Outlet Big Thompson River	Forest and Cropland	Mercury	Chemistry, Manufacturing Processes, and Material Production	AML BMPs
1019000606 Outlet Big Thompson River	Forest and Cropland	Selenium	Material Production, Manufacturing Processes, Gas Combustion, Pierre Shale	Irrigation Water Management

Implementation practices were run in the PLET model on 25 percent of each applicable land cover. This number represents the acres affected by the practice, not the acres of the practice implemented. Cropland practices typically resulted in the highest reductions of nitrogen and phosphorus; therefore, these are the practices incorporated in the schedule. As shown in Table 11-5, incorporating stream stabilization and fencing on 25 percent of the cropland and 35-foot buffers on an additional 25 percent of the cropland in the project area resulted in the needed nitrogen and phosphorus reductions. Reductions required were calculated for the entire area draining to the outlet HUC10. The reduction required for the specific project area was not calculated because project areas were drawn using county lines; therefore, the following cost estimates were made made assuming that all reductions had to come from within the project area. Table 11-6 shows the proposed schedule for implementation in the Big and Little Thompson River project area. These practices will also help with *E. coli* and heavy metals. Load reductions for heavy metals came from the PLET model and, therefore, were not run for *E. coli* and heavy metals. Because the current load reductions from PLET were not calibrated and did not include areas outside of Larimer and Weld Counties or MS4 areas, they should be considered relative and should not be compared to actual loads calculated with observed data.

Table 11-5. Reductions Achieved by Implementation of Priority Cropland Practices

Practice	Nitrogen Load (lb/yr)	Nitrogen Reduction (%)	Nitrogen Reduction Needed (lb/yr)	Phosphorus Load (lb/yr)	Phosphorus Reduction (%)	Phosphorus Reduction Needed (lb/yr)
Base Load	212,748	N/A		54,524	N/A	
Stream Stabilization and Fencing on 25% of Cropland (14,434 acres)	20,292	9.5	0	4,938	9.1	8
Buffer - Grass (35 feet wide) on 25% of Cropland (14,434 acres)	10,440	4.9		3,123	5.7	O
Total Reduction	30,372	14.4		8,061	14.8	

Table 11-6. Schedule for Primary Cropland Practices to Achieve Nutrient Goals

Practices	5-Year Goal	10-Year Goal	Ultimate Goal
Stream Stabilization and Fencing on Cropland	5,000 acres	10,000 acres	15,000 acres
Buffer - Grass (35 feet wide) on Cropland	5,000 acres	10,000 acres	15,000 acres

In general, 35-foot buffers cost about \$10.37 per acre impacted per year, fencing costs about \$22.66 per acre impacted per year, and streambank stabilization costs \$13,472 per mile. If a mile of streambank stabilization impacted a square mile of the watershed area, it would cost approximately \$21.05 per acre impacted per year; therefore, every 5,000 acres impacted by buffers would cost approximately \$51,838 and with the rough streambank stabilization estimate, every 5,000 acres impacted by stream stabilization would cost approximately \$218,549.

12.0 MONITORING BEST MANAGEMENT PRACTICES EFFECTIVENESS

Monitoring should be completed before and after implementing BMPs to evaluate the effectiveness of priority practices. Monitoring BMP effectiveness (up- and downstream of BMPs) helps evaluate the adequacy of the implementation strategies targeted to reduce loads or transport. BMP effectiveness data will improve the understanding of implementation and management measures. Other ideal locations for monitoring include areas that have been monitored historically near the HUC10 watershed outlets and along impaired waterbodies. More information about monitoring NPSs is included on EPA's Nonpoint Source Monitoring: TechNOTES webpage. Existing water quality monitoring occurring for the NFRWQPA's 208 Areawide Water Quality Management Plan is available on its website.

Additional monitoring and evaluation efforts should occur within the communities that are the most likely to become MS4 areas. Monitoring sites up- and downstream of areas where storm drains and tributaries enter the mainstem Big and Little Thompson Rivers would help evaluate contributions. Monitoring locations in storm drains throughout urbanized areas where two possible sources come together would also help isolate sources of pollution. A detailed monitoring plan that identifies the locations of additional monitoring sites should be compiled.

Continuous discharge data across a broad range of flows are helpful for calculating loads. Future monitoring should include instantaneous discharge measurements at water quality sampling areas. Continuous stage recorders should be installed at key locations in the watershed and stage-discharge relationships should be developed to convert continuous stage data to continuous flow data. Relatively low-cost, low-maintenance technologies are available to record continuous stage data. Instantaneous and continuous flow data will increase the accuracy of future load calculations and the evaluation of BMPs and implementation practices.

Survey #2 had a question regarding in-stream monitoring activities that different entities would consider implementing. The Northern Colorado Water Conservancy District would be interested in quarterly sampling as well as the installation, maintenance, and operation of a monitoring station. The Colorado Wheat Administrative Committee would be interested in quarterly sampling to be analyzed by a local laboratory. The Colorado Watershed Assembly would be interested in the installation, maintenance, and operation of a monitoring station.

13.0 TECHNICAL AND FINANCIAL ASSISTANCE SOURCES

Technical and financial assistance sources are available to implement BMPs. Numerous private companies and organizations as well as local, state, and federal agencies provide technical assistance to address NPS pollution. A few of these organizations and agencies also provide financial assistance. Table 13-1 lists the agencies and organizations with technical and financial programs that may assist with conservation and water quality implementation projects and what type of technical or financial assistance they offer (based on the land use of interest) as denoted by Xs. The following sections describe the information regarding incentive programs and funding to implement NPS projects identified in this plan. Funding includes but is not limited to the CDPHE's NPS Program and its annual grants, the South Platte Basin Roundtable grants, and the CAWA programs. The NPS Program funds support staffing costs and programmatic priorities including the Mini Grant Program, the NPS Watershed Planning and Tool Development Program, and the NPS Program's Success Story Initiative.

 Table 13-1. Sources of Technical and Financial Assistance (Page 1 of 3)

Agency or Organization	Website	Assistance	BMP Category							
			Developed Non-MS4	Cropland	Pasture	Feedlot	Forest	Stream	Outreach	
LOCAL										
City of Loveland	www.lovgov.org	Financial, Technical	X					Χ	Х	
Town of Johnstown	www.johnstown.colorado.gov	Financial, Technical	X					Χ	Х	
Town of Estes Park	estespark.colorado.gov	Financial, Technical	X					Χ	Х	
Larimer County	www.larimer.gov	Financial, Technical	Х	Х	X	Х	X	Χ	Х	
Weld County	www.weld.gov	Financial, Technical	X	Х	Χ	Х	X	Χ	Х	
BTWC	bigthompson.co	Technical	Х	Х	Χ	Х	X	Χ	Х	
South Platte Basin Roundtable	www.southplattebasin.com	Technical	X	Х	Χ	Х	X	Χ	Х	
Larimer Conservation District (Previously Fort Collins and Big Thompson Conservation Districts)	https://www.larimercd.org/	Financial, Technical		X	Х	X	X	X	X	
Platte Valley Conservation District	www.coloradolandcan.org/local- resources/Platte-Valley- Conservation-District/3610	Financial, Technical		X	X	X	X	X	X	
Southeast Weld Conservation District	seweldcd-co.org	Financial, Technical		X	X	Χ	Х	Х	X	

Table 13-1. Sources of Technical and Financial Assistance (Page 2 of 3)

Agency or Organization	Website	Assistance	BMP Category							
			Developed Non-MS4	Cropland	Pasture	Feedlot	Forest	Stream	Outreach	
STATE										
CSU Extension	extension.colostate.edu	Technical	X	Х	Х	Х	X	Χ	Х	
CSU	www.colostate.edu	Technical	X	Х	X	Х	X	Χ	Х	
Colorado Association of Conservation Districts	coloradoacd.org	Financial, Technical	X	X	X	X	Х	Х	X	
Colorado Department of Public Health and Environment	cdphe.colorado.gov	Financial, Technical	X	X	X	Χ	Х	X	Х	
Colorado Parks and Wildlife	cpw.state.co.us	Financial, Technical					X	Χ	Х	
Colorado Livestock Association	www.coloradolivestock.org	Technical				Х		Х	Х	
Colorado Department of Agriculture	ag.colorado.gov	Financial, Technical		Х	Х	Х		Χ	Х	
Colorado Water Center	watercenter.colostate.edu	Technical						Χ	Х	
Colorado Water Conservation Board	cwcb.colorado.gov	Financial, Technical	Х	Х	Х	Х	X	Χ	Х	
Colorado Rural Water Association	www.crwa.net	Technical						Χ	Х	
Colorado Department of Natural Resources	dnr.colorado.gov	Financial, Technical	X	Х	X	Χ	Х	X	Х	
Colorado Energy and Carbon Management Commission	ecmc.state.co.us	Financial, Technical		X	Х	Χ				
Colorado Geological Survey	coloradogeologicalsurvey.org	Financial, Technical						Х		
Colorado Bureau of Land Management	www.blm.gov	Financial, Technical					Х	Х	X	
Colorado Division of Reclamation, Mining, and Safety	drms.colorado.gov	Financial, Technical					Х	Х	Х	
Colorado State Land Board	slb.colorado.gov	Financial							Х	

 Table 13-1. Sources of Technical and Financial Assistance (Page 3 of 3)

Agency or Organization	Website	Assistance	BMP Category							
			Developed Non-MS4	Cropland	Pasture	Feedlot	Forest	Stream	Outreach	
FEDERAL										
U.S. Army Corps of Engineers	www.usace.army.mil	Financial, Technical						X	Х	
USDA-NRCS	www.nrcs.usda.gov	Financial, Technical		Х	X	Х	X	X	Х	
USDA-Farm Service Agency	www.fsa.usda.gov	Financial, Technical		Х	X	Х		Χ	Х	
USDA-Rural Development	www.rurdev.usda.gov	Financial, Technical						X	X	
USDA-Bureau of Land Management	www.blm.gov	Financial, Technical					Χ	X	X	
U.S. Department of Interior–Bureau of Reclamation	www.usbr.gov	Financial, Technical	X	Х			Х	Х	Х	
EPA	www.epa.gov	Financial, Technical	Х	Х	Х	Х	X	Х	Х	
USDA-Forest Service	www.fs.fed.us	Financial, Technical					Χ	Χ	Х	
USFWS	www.fws.gov	Financial, Technical						Χ	Х	
USGS	www.usgs.gov	Technical						Χ	Х	
PRIVATE										
Ducks Unlimited	www.ducks.org	Financial, Technical						Χ	Х	
Colorado Trout Unlimited	coloradotu.org	Financial, Technical						Χ	Х	
Fresh Water Trust	www.thefreshwatertrust.org	Financial, Technical	Х	Х	X	Х	Χ	Χ	Х	
Mule Deer Foundation	www.muledeer.org	Financial, Technical					Х	Х	Х	
Rocky Mountain Elk Foundation	www.rmef.org	Financial, Technical					X	Х	Х	
National Fish and Wildlife Foundation	www.nfwf.org	Financial, Technical						Х	Х	

13.1 INCENTIVE PROGRAMS

Incentive programs are formal programs used to promote specific actions or behaviors. Participation in incentive programs is voluntary. Various mechanisms can be used to conduct incentive programs, including financial assistance or providing benefits for enrolling in programs. The following programs are relatively easy for users to take advantage of, and the money for them is generally allocated annually.

13.1.1 COST-SHARE PROGRAMS

In a cost-share program, the costs of systems or practices for water quality improvements are shared between the landowner, state (percentage), or federal programs (flat rate). State-funded nonstructural land management cost sharing is also typically based on a flat rate. Landowners seeking cost-share assistance should contact their county conservation district office for information on available programs. The BMPs and conservation practices that are typically eligible are those that avoid, control, and trap nutrients, sediment, and *E. coli* from entering surface water and groundwater. Eligibility may vary depending on local priorities and needs.

13.1.2 FEE DISCOUNTS

Local governments or nonprofit entities may offer reduced fees for implementing projects and practices that align with program goals. For instance, stormwater fees could be reduced if a landowner voluntarily converts cropped acres to a permanent vegetative cover.

13.1.3 LOW-INTEREST LOANS

Low-interest loans may be available through various state agencies to landowners for agricultural BMPs, septic system updates/replacement, or other projects that meet funding eligibility criteria.

13.1.4 WATER QUALITY TRADING

Point source permittees should be mindful that options are available to use money available for upstream NPS implementation to improve water quality for a smaller potential cost. These options need to be further evaluated and quantified.

13.2 POTENTIAL FUNDING

Funding is available from private, local, county, state, and federal sources to implement projects for improving water quality. The following sections discuss these sources. Other funding sources not noted here may be available. The state of Colorado maintains a Grants Information page on its website.

13.2.1 CITIES

Municipalities often collect stormwater utility fees to build, repair, operate, and maintain stormwater management systems. Such fees should be set using reasonable calculations based on runoff volume or pollution quantities, property classifications, or both.

13.2.2 COUNTIES. WATERSHED DISTRICTS. AND AUTHORITIES

In other areas of Colorado, authorities have been developed, such as the Cherry Creek Basin Water Quality Authority and the Chatfield Watershed Authority. These authorities can levy funds for priority projects and assist with program implementation. The NFRWQPA and other 208 planning agencies cannot levy funds or taxes for projects, but they have voluntary fees and dues that contribute to planning and implementation. Recently, the Chatfield Watershed Authority also added an entrance fee to the Chatfield State Park to assist with protecting water quality.

13.2.3 STATE

The State of Colorado funds watershed management programs through various capacities, programs, and agencies.

The CDPHE has numerous NPS funding opportunities, which include watershed implementation projects (restoration and protection), watershed planning and tool development, and education and outreach. The primary CDPHE opportunities consist of the Source Water Assessment and Protection (SWAP) Program; the Water Quality Grants and Loans Unit; CSU's Colorado Wetland Information Center; CSU's Colorado State Forest Service; the Department of Natural Resources' Colorado Water Conservation Board (CWCB); Colorado Water Plan Grants; and Colorado Watershed Restoration Grants. More information regarding each program is provided in CDPHE [2022]. Funds from the Water Supply Reserve Fund (WSRF) are issued through the South Platte Basin Roundtable. CDPHE has a state revolving fund that includes a Water Pollution Control revolving fund that completes many OWTS to sewer projects.

Under the Colorado Natural Resources Department, the CWCB also administers the Federal Technical Assistance Grant Program, consisting of Local Capacity Grants and Technical Assistance Grants. Federal American Rescue Plan Act funding of \$5 million is available for these two grants in Colorado. The grantee must provide a minimum of 25 percent matching funds. Grants will be awarded on a rolling basis through December 2024; grant funds must be fully expended by December 2026. Local Capacity Grants are direct awards to grantees to secure the resources needed (contractors or otherwise) to develop projects and submit competitive federal grant applications. Technical Assistance Grants are awards to grantees who want to use a contractor hired by the CWCB. This contractor can provide a wide variety of water project services, such as federal grant opportunity research, project design, partial engineering, cost estimation, and federal application development/grant writing. Statewide education grants and outreach initiative grants are available through the Public Education, Participation, and Outreach (PEPO) Grant Program, which is administered through the CWCB. The PEPO Grant Program also financially supports designated individual coordinators who support basin-specific outreach and education efforts alongside each of the state's basin roundtables. The Colorado Department of Natural Resources also maintains a Water Funding Opportunity Navigator, which lists potential federal and state grant opportunities.

Other state funding opportunities include the Colorado Healthy Rivers Fund. This program grants money to local watershed organizations to provide clean water, protect habitat, and improve recreation and accessibility throughout Colorado. Project grants and planning grants are available under the program.

13.2.4 FEDERAL

Federal agencies can provide funding and technical assistance for projects and monitoring. These agencies include the U.S. Fish and Wildlife Service (USFWS), USGS, NRCS, Farm Service Agency, EPA, and others. The USGS is more likely to support data acquisition and monitoring programs and the USFWS may provide land retirement program funds. The NRCS helps with applying conservation practices, and the EPA assists with studies to identify more localized sources of pollution in impaired waterbodies. The following sections provide information regarding federal NPS funding.

13.2.4.1 U.S. ENVIRONMENTAL PROTECTION AGENCY

The EPA provides funding opportunities for watershed restoration and protection on its <u>funding</u> <u>resource webpage</u> for NPS pollution. Additional EPA funding opportunities are available online on the <u>Equity Action Plan webpage</u> and <u>Environmental Justice Grants</u>, <u>Funding and Technical Assistance</u> webpage.

The EPA also has a funding opportunity through the Office of Wetlands, Oceans, and Watersheds' Fiscal Year 2024 Building Partner Capacity and Promoting Resiliency and Equity under the CWA. The EPA is soliciting applications from eligible applicants to provide support for training and related activities to build the capacity of agricultural partners; state, territorial, and Tribal officials; and nongovernmental stakeholders in support of the goals of the CWA Section 319 Nonpoint Source Management Program.

The EPA also has funding from the Clean Water State Revolving Fund (CWSRF) accessible via the <u>About the Clean Water State Revolving Fund (CWSRF) webpage</u>. The funds are generally for municipal wastewater facility construction, control of NPS pollution, decentralized wastewater treatment systems, green infrastructure projects, project estuaries, and other water quality projects.

13.2.4.2 U.S. DEPARTMENT OF AGRICULTURE'S NATURAL RESOURCES CONSERVATION SERVICE

The NRCS's natural resources conservation programs help individuals reduce soil erosion, enhance water supplies, improve water quality, increase wildlife habitat, and reduce damage caused by floods and other natural disasters. More information is available on the <u>USDA Programs & Initiatives webpage</u>.

The following technical and financial assistance programs are generally awarded annually through NRCS:

- / Agricultural Conservation Easement Program (ACEP). Applications are accepted from April through December. ACEP easement agreements are typically awarded annually by the fall.
- Conservation Stewardship Program (CSP). The CSP helps agricultural producers maintain and improve existing conservation systems and adopt additional conservation activities to address priority resource concerns. Participants earn CSP payments for conservation performance—the higher the performance, the higher the payment. Different enrollment opportunities are available for CSP Classic, CSP Renewals and CSP Grasslands. Applications are accepted from April through December. CSP contracts are awarded by June or July.
- Conservation Technical Assistance (CTA). The CTA provides the nation's farmers, ranchers, and forestland owners with the knowledge and tools they need to conserve, maintain, and restore the natural resources on their lands and improve the health of their operations for the future. NRCS offers this assistance at no cost to the producers served.

- Invironmental Quality Incentives Program (EQIP). EQIP provides financial and technical assistance to agricultural producers to address natural resource concerns and deliver environmental benefits, such as improved water and air quality; conserved ground and surface water; increased soil health; reduced soil erosion and sedimentation; improved or created wildlife habitat; and mitigation against increasing weather volatility. Applications are accepted on a continuous basis, with application cutoff for funding evaluation typically set in November of each year. EQIP contracts are typically awarded by April or May.
- / Regional Conservation Partnership Program (RCPP). RCPP promotes coordination of NRCS conservation activities with partners that offer valuable contributions to expand the collective ability to address on-farm, watershed, and regional natural resource concerns. Announcements for Funding Proposals (AFPs) for RCPP Classic are typically advertised in October through November and awarded in June through August. RCPP Alternative Funding Arrangement (AFA) AFPs are typically announced March through May, with agreements awarded by September and, in some cases, the funds are carried over and awarded from October to December of the following fiscal year.
- / National Water Quality Initiative (NWQI). NWQI provides a way to accelerate voluntary, on-farm conservation investments focused on water quality monitoring and assessment resources, where they can deliver the greatest benefits for clean water. The NWQI is a partnership among NRCS, state water quality agencies, and EPA to identify and address impaired waterbodies through voluntary conservation.
- / Watershed Operations PL-566 Program. The Watershed Protection and Flood Prevention Act (PL-566) authorizes the USDA-NRCS to help local organizations and units of government plan and implement watershed projects. PL-566 watershed projects are locally led to solve natural and human resource problems in watersheds up to 250,000 acres (less than 400 mi²). At least 20 percent of any project benefits must relate directly to agriculture, including rural communities. A local sponsoring organization is needed to carry out, maintain, and operate works of improvement. The program has two main components, and each is funded separately: (1) watershed surveys and planning and (2) watershed and flood prevention operations and construction.
- Conservation Innovation Grants (CIG). CIG is a competitive program that supports the development of new tools, approaches, practices, and technologies to further natural resource conservation on private lands. Through creative problem-solving and innovation, CIG partners work to address the nation's water quality, air quality, soil health, and wildlife habitat challenges while improving agricultural operations. Three program types are available: (1) national, (2) state, and (3) CIG On-Farm Conservation Innovation Trials.
- / Rural Development. For OWTS funding, USDA Rural Development has a 504 Single Family Program, a Community Development Program, a Home Repair Loan/Grant Program, a Community Pass-through Program, and Water Well Trust Program. Income eligibility for these programs is often a sliding scale.

Other federal agency funding includes the U.S. Bureau of Reclamation (USBR) WaterSMART. Through WaterSMART, the USBR leverages federal and nonfederal funding to work cooperatively with states, tribes, and local entities as they plan for and implement actions to increase water supply sustainability through investments in existing infrastructure and attention to local water conflicts.

13.2.5 PRIVATE/OTHER SOURCES

Foundations, nonprofit organizations, and private contributions, including those from landowners and corporate entities, will be sought for plan implementation activities. Local foundations may fund education, civic engagement, and other local priority efforts. Such organizations acquire their own funding and may have project dollars and technical assistance that can be used. Major cooperators and funding sources include private landowners who typically contribute a percentage of project costs and may donate land, services, or equipment for projects or programs.

Some of the stakeholder questions asked in Survey #2 were related to the technical and financial assistance needed or used and how they used it. The Northern Colorado Water Conservancy District mentioned that it has an extensive, long-term water quality monitoring program in the Big Thompson River HUC8. Los Rios Farm, a local farm in the watershed, stated a need for financial assistance for projects if landowners were willing and has been successful in receiving funding from the Federal Emergency Management Agency (FEMA), NRCS, and CWCB. Technical resources that would be helpful include education on project benefits and how resulting projects impact the adjacent communities. Los Rios Farm has received technical assistance from the CSU Watershed Group and is aware of technical assistance available from the NRCS but has not used it. The Colorado Watershed Assembly has received CWCB and NPS funds and other funds from the Cherry Creek Basin Water Quality Authority and Great Outdoors Colorado, as well as county and municipal funding and technical assistance. The Colorado Watershed Assembly tracks various federal grant opportunities and has used the CWCB and NPS Program for technical assistance. The Colorado Wheat Administrative Committee is aware of financial assistance from the conservation districts, NRCS, crop consultants, and NRCS Agricultural Research Service but has yet to secure funding.

The following are private foundations with available funding programs:

- The Laura Jane Musser Fund, a foundation based in Minnesota, assists public or not-for-profit entities to initiate or implement projects that enhance the ecological integrity of publicly owned open spaces while encouraging compatible human activities. The fund's goal is to promote public use of open space that improves a community's quality of life and public health, while also ensuring the protection of healthy, viable, and sustainable ecosystems by defending or restoring habitat for the diversity of plant and animal species.
- The Moore Charitable Foundation works to preserve and protect natural resources for future generations. This foundation and its affiliates support nonprofit organizations that protect land, wildlife, habitat, and water resources in several regional planning areas, including Colorado. The foundation also supports educational and community programs in these areas.
- The Colorado River Basin Salinity Control Act, established in 1974, provides authorization for enhancing and protecting numerous salinity control projects in Colorado and other states. High levels of salinity in water can reduce crop yields, limit the choice of crops that can be grown, and, at higher concentrations over long periods, can kill trees and make the land unsuitable for agricultural purposes. Through strong partnerships between the NRCS, private landowners, USBR, CWCB, and several local conservation districts, financial and technical assistance funds have been used to install irrigation improvements, such as the installation of pipelines, more efficient irrigation systems, and lining of ditches and small laterals.

- / The Colorado Watershed Assembly routinely posts funding opportunities through its bimonthly newsletter available on the <u>Colorado Watershed Assembly homepage</u>.
- / The South Platte Basin Roundtable offers two funding cycles annually, and information is available on the South Platte Basin homepage.

14.0 REFERENCES

American Veterinary Medical Association, 2016. "U.S. Pet Ownership Statistics," avma.org, accessed June 30, 2016, from https://www.avma.org/KB/Resources/Statistics/Pages/Market-research-statistics-US-pet-ownership.aspx

Big Thompson Watershed Coalition, 2024. "All BTWC Projects," accessed May 30, 2024, from https://bigthompson.co/big-thompson-projects/

Brandt, T. R. and J. P. Colgan, 2023. Digital database of the previously published geologic map of the Boulder-Fort Collins-Greeley area, Colorado: U.S. Geological Survey data release, available online at https://doi.org/10.5066/P95MSFVF.

Briffa, J., E. Sinagra, and R. Blundell, 2020. "Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans", *Heliyon*, Volume 6, Issue 9, e04691, ISSN 2405-8440, available online at *https://doi.org/10.1016/j.heliyon.2020.e04691*

Catena Analytics, 2024. "eRAMS Online," accessed August 13, 2024, from https://erams.com/catena/

Colorado's Decision Support Systems, 2024. "GIS Data by Category," accessed August 13, 2024, from https://cdss.colorado.gov/gis-data/gis-data-by-category

Colorado Department of Public Health and Environment, 2022. Colorado's Nonpoint Source Management Plan: 2022, prepared by Colorado Department of Public Health and Environment Water Quality Control Division, Glendale, CO, available online at https://drive.google.com/file/d/1nrZ1D4yp2LGHUxrNsyjwGbu3w1ZCs9wz/view

Colorado Geospatial Portal, 2024. 2024 State of Colorado Public Parcels, CO Office of Information Technology, Enterprise GIS, accessed August 14, 2024, from https://geodata.colorado.gov

Colorado Water Plan, 2015. "South Platte/Metro Analysis and Technical Update," accessed May 30, 2024, from https://dnrftp.state.co.us/CWCB/Technical%20Update%20to%20Water%20Plan/1.%20Technical%20Update%20Documentation/Volume%201-Section%204.8-S%20Platte%20Metro%20Republican%20Results.pdf

The Diggings, 2024. "Mining In Weld County, Colorado," accessed August 15, 2024, from https://thediggings.com/usa/colorado/weld-co123

Environmental Systems Research Institute, Inc., 2014. "USA Federal Lands," accessed August 14, 2024, from https://www.arcgis.com/home/item.html?id=c959f521c02f4f64abf4d39019c5ccd5

Fischer, J., 2023. Personal communication between J. Fischer, Invision GIS, CO, and C. Kirby, RESPEC, Rapid City, SD, December 14.

Graves, **J.**, **2024**. Personal communication between J. Graves, Colorado Division of Reclamation, Mining, and Safety, Denver, CO, and N. Acosta, RESPEC, Colorado Springs, CO, March 8.

Hawley, C. and N. Rodriquez-Jeangros, 2021. *Big Thompson State of the Watershed 2021 Final Report*, prepared by Hydros Consulting, Boulder, CO, for Big Thompson Watershed Forum, Fort Collins, CO.

Horsley and Witten, Inc., 1996. *Identification and Evaluation of Nutrient and Bacterial Loadings to Maquoit Bay, New Brunswick, and Freeport, Maine*, prepared by Horsley & Witten, Inc., Barnstable, MA, for Casco Bay Estuary Project, Portland, ME.

Horton, J.D., C. A. San Juan, and D. B. Stoeser, 2017. "The State Geologic Map Compilation (SGMC) Geodatabase of the Conterminous United States," *US Geological Survey Data Series 1052*, Ver. 1.1, August 2017, p. 46.

Larimer County, 2024. "Larimer County GIS Digital Data," accessed August 14, 2024, from https://www.larimer.gov/it/gis/digital-data

Metcalf and Eddy, Inc., 1991. *Wastewater Engineering: Treatment, Disposal and Reuse*, 3rd Edition, McGraw-Hill, New York, NY.

Minnesota Pollution Control Agency, 2024. "Minnesota Stormwater Manual Overview of Minimal Impact Design Standards (MIDS)," accessed May 6, 2024, from https://stormwater.pca.state.mn.us/index.php/
Overview_of_Minimal_Impact_Design_Standards_(MIDS)

Moore, E., 2022. *Colorado's Nonpoint Source Program: 2022 Annual Report*, prepared by Colorado Department of Public Health and Environment Water Quality Control Division, Denver, CO, available online at https://storymaps.arcgis.com/stories/e7212fd7f8224b839b669fd8bbd058a4

Multi-Resolution Land Characteristics Consortium, 2019. "National Land Cover Database 2019 - Landcover & Imperviousness (NLCD2019)," accessed August 14, 2024, from https://www.mrlc.gov/data?f%5B0%5D=category%3ALand%20Cover&f%5B1%5D=year%3A2019

National Interagency Fire Center, 2024. "InterAgencyFirePerimeterHistory All Years View," accessed August 14, 2024, from https://data-nifc.opendata.arcgis.com/datasets/e02b85c0ea784ce7bd8add7ae3d293d0_0/explore?location=39.994103%2C-103.924962%2C8.89

Natural Resources Conservation Service, 2024a. "Soil Survey Geographic Database (SSURGO)," accessed August 13, 2024, from https://www.nrcs.usda.gov/resources/data-and-reports/soil-survey-geographic-database-ssurgo

Natural Resources Conservation Service, 2024b. "Conservation Practices Physical Effects (CPPE) – FY24 National Template-Version 2," accessed May 14, 2024, from https://www.nrcs.usda.gov/resources/guides-and-instructions/conservation-practice-physical-effects

Natural Resources Conservation Service, 2024c. "Conservation Practice Standard Land Reclamation, Abandoned Mined Land Code 543," accessed May 30, 2024, from https://www.nrcs.usda.gov/sites/default/files/2022-09/Land_Reclamation_Abandoned_Mined_Land_543_NHCP_CPS.pdf

North Front Range Water Quality Planning Association, 2022. 208 Areawide Water Quality Management Plan 2022 – 208 AWQMP Update (Region 2), prepared by the North Front Range Water Quality Planning Association, Johnstown, CO.

PRISM Climate Group, 2024. "Average Monthly and Average Annual Precipitation 1961-1990, 1971-2000 and 1981-2010 by State," accessed May 14, 2024, from https://gdg.sc.egov.usda.gov/Catalog/ProductDescription/PRCIP.html

Smith, E., 2024. *2023 Zoning Boundary.zip,* attachment from personal communication between E. Smith, Town of Timnath, CO, and C. Kirby, RESPEC, Rapid City, SD, January 29.

Tetra Tech, Inc., 2022. *User's Guide Pollution Load Estimation Tool Version 1.0*, developed for the U.S. Environmental Protection Agency by Tetra Tech, Inc. Fairfax, VA.

The Water Research Foundation, 2024. "International Stormwater BMP Database," accessed August 14, 2024, from *https://bmpdatabase.org/*

Thomas, M., 2024. Personal communication between M. Thomas, North Front Range Water Quality Planning Association, Johnstown, CO, and C. Kirby, RESPEC, Rapid City, SD, May 2.

University of Missouri Extension, 2024. "Nitrogen in the Environment: Nitrogen's Most Common Forms," accessed June 5, 2024, from https://extension.missouri.edu/publications/wq253

U.S. Census Bureau, 2020. "QuickFacts: Loveland City, Colorado; United States" accessed July 29, 2024, from https://www.census.gov/quickfacts/fact/table/lovelandcitycolorado,US/PST045222

U.S. Department of Agriculture, 2024. "Farmers.gov," accessed May 30, 2024, from www.farmers.gov

U.S. Environmental Protection Agency, 2008. "Handbook for Developing Watershed Plans to Restore and Protect Our Waters," accessed August 13, 2024, from https://www.epa.gov/nps/handbook-developing-watershed-plans-restore-and-protect-our-waters

U.S. Environmental Protection Agency, 2022. "User's Guide Pollutant Load Estimation Tool (PLET) Version 1.0," accessed August 1, 2024, from https://www.epa.gov/system/files/documents/2022-04/user-guide-final-04-18-22_508.pdf

U.S. Environmental Protection Agency, 2023. "Best Management Practice Definitions Document for Pollutant Load Estimation Tool," accessed May 1, 2024, from https://www.epa.gov/system/files/documents/2023-04/BMP_Description_revised%203-9-23_final%20with%20alt%20text_508.pdf

U.S. Environmental Protection Agency, 2024a. "Nonpoint Source (NPS) Watershed Projects Data Explorer," accessed August 14, 2024, from https://ordspub.epa.gov/ords/grts/f?p=109:940::::940::

U.S. Environmental Protection Agency, 2024b. "Per- and Polyfluoroalkyl Substances (PFAS) Final PFAS National Primary Drinking Water Regulation," accessed August 14, 2024, from https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas

U.S. Geological Survey, 2019. "SPARROW Modeling Program," accessed August 14, 2024, from https://www.usgs.gov/software/sparrow-modeling-program

U.S. Geological Survey Colorado Water Science Center, 2000. "NAWQA South Platte River Basin Study," accessed May 30, 2024, from *https://www.usgs.gov/centers/colorado-water-science-center/science/nawqa-south-platte-river-basin-study*

WebMD, 2024. "Blue Baby Syndrome: What Is It?," accessed May 30, 2024, from https://www.webmd.com/baby/what-is-blue-baby-syndrome

Workman, J. B., J. C. Cole, R. R. Shroba, K. S. Kellogg, and W. R. Premo, 2018. Geologic Map of the Fort Collins 30'×60' quadrangle, Larimer and Jackson Counties, Colorado, and Albany and Laramie Counties, Wyoming, available online at https://ngmdb.usgs.gov/Prodesc/proddesc_108070.htm

Zeckoski, R. W., B. L. Benham, S. B. Shah, and C. D. Heatwole, 2005. "BSLC: A Tool for Bacteria Source Characterization for Watershed Management," *Applied Engineering in Agriculture*, Vol. 21, No. 5, pp. 879–889.

APPENDIX A SURVEY QUESTIONS

2022 SURVEY

- 1. Agency/organization's name
- 2. Website URL
- 3. Contact person(s), name(s)
- 4. Email address(s)
- 5. Phone number(s)
- 6. Which of the following watersheds is/are the focus of your organization
 - a. Big and Little Thompson
 - b. Middle South Platte
 - c. Cache la Poudre
 - d. St. Vrain Creek
 - e. Other
- 7. If known, please list the waterbody name and segment identification (AUID) (i.e., COSPUS15) if it was selected from question #6, please provide the watershed name.
- 8. Does your agency have an existing watershed plan, source water plan, NPS plan, or other?
- Please provide the link to the watershed plan(s) if available below or send a copy to Mark Thomas at: mthomas@nfrwqpa.org
- 10. Is the plan under development if you agency does not have an existing watershed plan identified in question #8?
- 11. What level of impact do the following nonpoint sources have on water quality in your watershed? (check one for each row)
 - a. Abandoned mine lands
 - b. Agriculture (including agricultural return flows and agricultural stormwater runoff)
 - c. Hydromodification (diversions including transbasin diversions)
 - d. Habitat alteration
 - e. Urbanization
 - f. Onsite wastewater systems (aka septic systems)
 - g. Runoff from roadways
 - h. Post wildfire impacts (includes post-wildfire flooding)
 - i. Climate change
 - Hazardous household or industrial wastes (pharmaceuticals, oil, paint, acids, pesticides, etc.)
- 12. What are the major pollutants of concern? (check all that apply)
 - a. Sediment (includes ash from wildfire)
 - b. Total suspended solids (TSS)
 - c. Nitrogen
 - d. Phosphorus
 - e. Temperature
 - f. Metals
 - g. E. coli
 - h. Emerging contaminants
 - i. Other
- 13. Please check all water quality parameters/analytes that your group measures:
 - a. Sediment (includes ash from wildfire)
 - b. Total suspended solids (TSS)

- c. Nitrogen
- d. Phosphorus
- e. Temperature
- f. Metals
- q. E. coli
- h. Emerging contaminants
- i. Other
- 14. If known, what is the period of record for each of the analytes listed above?
- 15. Is the data publicly available on the Colorado Data Sharing Network (CDSN)?
- 16. If the data is not publicly available, would you be willing to share your data with NFRWQPA?
- 17. What types of watershed projects have been completed?
 - a. Habitat improvements
 - b. Bank stabilization grading
 - c. Bank stabilization vegetation
 - d. Installation of drop or other in rivers
 - e. Vegetation buffers
 - f. Agricultural tailwater BMPs
 - g. Unknown
- 18. What projects are high priority for your organization/watershed group?
- 19. What barriers from question (#18) may be preventing the project?
 - a. Funding
 - b. Technical resources
 - c. Instrumentation
 - d. Staffing/volunteer time
 - e. No barriers are preventing the project
 - f. Other
- 20. Does your organization/agency provide any of the following services:
 - a. BMP recommendations
 - b. Technical advice
 - c. Water quality sampling
 - d. Public education
 - e. Other
- 21. Do you have policies, guidelines, or governing codes related to nonpoint source water quality adoption? Please, provide sources or weblinks.
- 22. Does your jurisdiction's county/municipal code reference the NFRWQPA 208 Areawide Water Quality Management Plan?
- 23. What can a regional NPS watershed plan help your watershed organization accomplish?
- 24. If known, provide or identify areas of special interest that need to be protected from NPS pollutants.
- 25. Why does your watershed organization value water quality?
- 26. What is the public perception of your watershed's water quality?
- 27. What other issues or concerns would you like NFRWQPA to be aware of?
- 28. If you want to be added to the email/ notification/distribution list regarding meetings and updates concerning the Regional NPS Watershed Plan, please provide your email below.

RSI-3425 DRAFT

2024 SURVEY

- 1. Email address
- 2. First name
- 3. Last name
- 4. Please provide your contact information
- 5. Are you interested in participating with the NFRWQPA Technical Advisory Committee in guiding the Nonpoint Source plan best management practices (BMPs) for the Larimer and Weld County region and participating in the final report review for this project? If yes, please provide your name and email address.
- 6. What watershed are you most concerned with? Select all that apply.
 - a. Middle South Platte Cherry (Area of Concern: 10190003)
 - b. St. Vrain (Area of Concern: 10190005)
 - c. Big Thompson (Area of Concern: 10190006)
 - d. Cache la Poudre (Area of Concern: 10190007)
 - e. Lone Tree-Owl (Area of Concern: 10190008)
 - f. Crow (Area of Concern: 10190009)
 - g. Middle South Platte Sterling (Area of Concern: 10190012)
 - h. Other (please specify)
- 7. Aside from watershed plans, what other major projects have you done or are you aware of that has or may improve water quality in the watershed?
- 8. When were they completed?
- 9. What is the approximate area impacted by the project?
- 10. What is the approximate area impacted by the project? Please describe.
- 11. Are there current plans for a watershed plan or update of an existing plan in your area?
- 12. How many months a year do agriculture producers typically apply manure on crops?
- 13. Rank the likelihood of each following cropland BMPs to be implemented in your area from 1 to 5, with 1 being unlikely and 5 being very likely
 - a. List of BMPs from PLET
- 14. Does your watershed have BMPs for non-point source pollution? The following would be important to attain if available (including list/count estimate).
- 15. What BMPs have been implemented in your watershed? Please describe.
- 16. Approximately how many of each BMP type/technology (many are included in Section 5 questions) have been implemented in your HUC8?
- 17. What area of concern and/or water bodies are benefiting from the implemented BMPs? Please describe.
- 18. What land use(s) are the BMPs developed for? Select all that apply.
 - a. Cropland
 - b. Pasture
 - c. Forest
 - d. Urban
 - e. Feedlot
 - f. Other (please specify)
- 19. Please estimate the approximate area impacted by the implemented BMPs.

- 20. Is there any monitoring associated with determining pollutant load reductions and/or do the BMPs have estimated pollutant load reductions?
- 21. If you answered no, do you need technical and financial assistance to conduct monitoring?
- 22. What were the costs associated with the BMPs?
- 23. Are there noticeable improvements associated with implementing the BMPs? If yes, please describe.
- 24. Are there other BMPs you would like to see in addition to those currently constructed or implemented?
- 25. Please list any funded projects, activities, or next steps for non-point source pollution in your watershed in the next five years.
- 26. What types of information/education/outreach do you see being the most effective? Please check all that apply.
 - a. Water Quality Awareness Signage in Parks by Streams
 - b. Educational Campaign
 - c. Social Media
 - d. Story Map
 - e. Newsletters, Mailers, Blurbs
 - f. Website Update
 - g. Park Signage
 - h. "Report a Concern" Website
 - i. Volunteer Cleanup Programs
 - j. School Visits
 - k. Pet-waste Pickup Stations
 - Other (please specify)
- 27. Are you interested in collaboration with other stakeholder groups and hosting/participation in events?
- 28. Do you have any annual events/activities we could attend? If yes, please provide date/time/location/contact information.
- 29. Please describe what interim measurable criteria/milestones are used to determine goal achievement.
- 30. In 5 years, what does progress look like to you regarding pollution loading reduction in your area of concern?
- 31. In 10 years, what does progress look like to you regarding pollution loading reduction in your area of concern?
- 32. Which of the following in-stream monitoring activities would you likely consider implementing in your area of concern? Please select one or both options.
- 33. Do you need technical and financial assistance to conduct in-stream monitoring? If yes, please describe.
- 34. To develop/implement BMPs, do you need any financial assistance? If yes, please describe.
- 35. What financial assistance have you received for watershed improvement projects?
- 36. What are sources of financial assistance you know of but have not used?
- 37. What technical resources are needed to develop/implement BMPs?
- 38. What sources of technical assistance have you received in the past?
- 39. What are sources of technical assistance you know of but have not used?

- 40. Are there point discharges you are concerned about in your watershed (even in areas that are MS4 permitted)? If yes, please explain.
- 41. Are there non-point sources that you are concerned about in your watershed (even in areas that are MS4 permitted)? If yes, please explain.
- 42. Are you aware of abandoned mined land in your area?
- 43. If yes, are you aware of abandoned mined land BMP strategies implemented in your area?
- 44. What are the results of implementing such abandoned mined land BMP strategies?
- 45. Are you aware of agricultural practices (Cropland, Pasture, and/or Feedlot) in your area?
- 46. From the highest concern to the lowest, please rank the following agricultural concerns with 1 being the largest and 3 being the smallest: Cropland, Pasture, Feedlot.
- 47. Are you aware of agricultural BMP strategies implemented in your area?
- 48. If yes, what are the results of implementing such agricultural BMP strategies?
- 49. Are you aware of atmospheric deposition in your area?
- 50. If yes, are you aware of atmospheric deposition BMP strategies implemented in your area?
- 51. What are the results of implementing such atmospheric deposition BMP strategies?
- 52. Are you aware of forestry non-point source in your area?
- 53. If yes, are you aware of forestry non-point source BMP strategies implemented in your area?
- 54. Are you aware of hydromodification and habitat alteration in your area?
- 55. If yes, are you aware of hydromodification and habitat alteration BMP strategies implemented in your area?
- 56. If yes, what are the results of implementing such hydromodification and habitat alteration BMP strategies?
- 57. Are you aware of urbanization in your area?
- 58. If yes, are you aware of urbanization BMP strategies implemented in your area?
- 59. If yes, what are the results of implementing such urbanization BMP strategies?

RSI-3425 DRAFT

APPENDIX B MAPS OF IMPAIRED PARAMETERS

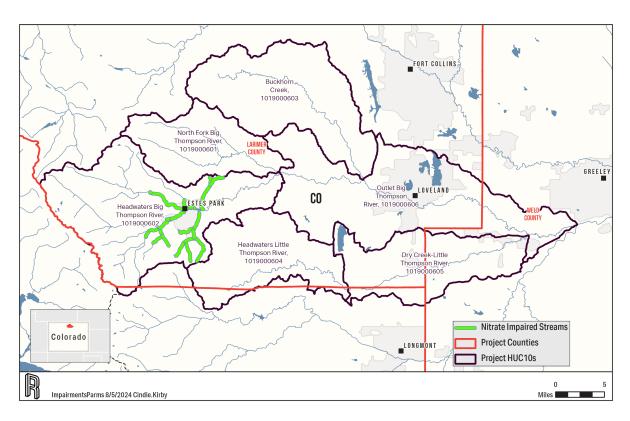


Figure B-1. Nitrate Impairments.

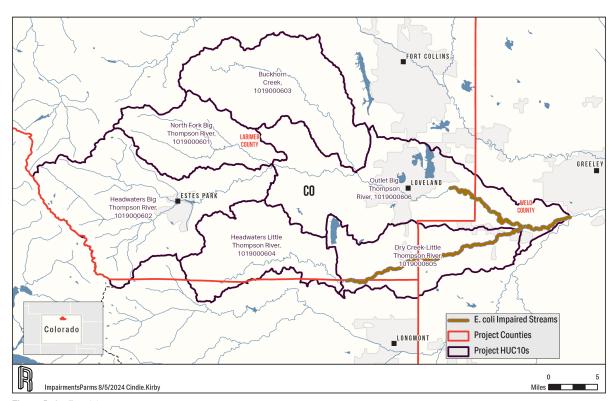


Figure B-2. E. coli Impairments.

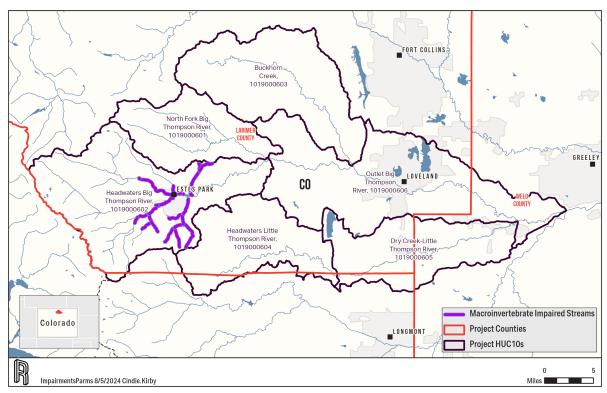


Figure B-3. Macroinvertebrate Impairments.

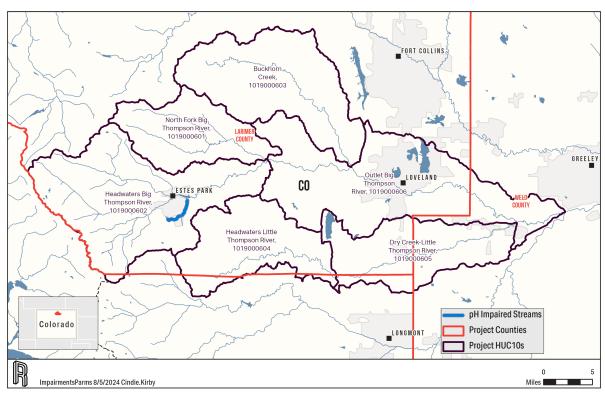


Figure B-4. pH Impairments.

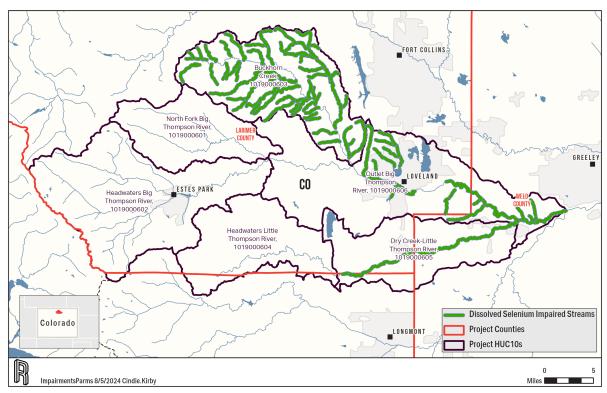


Figure B-5. Selenium Impairments.

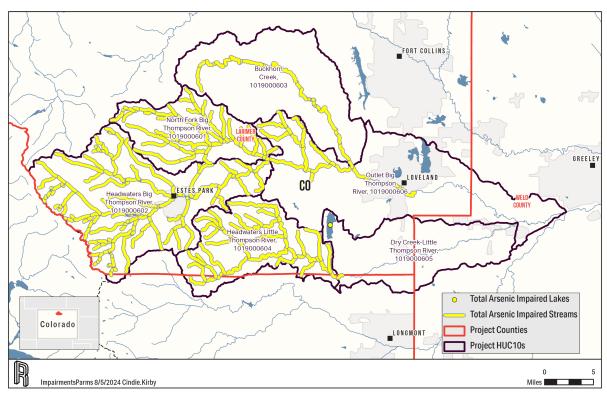


Figure B-6. Arsenic Impairments.

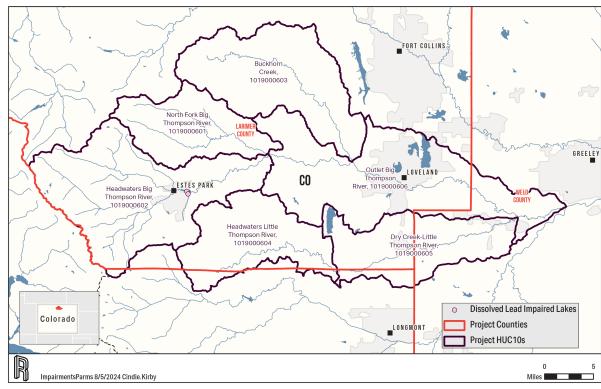


Figure B-7. Lead Impairments.

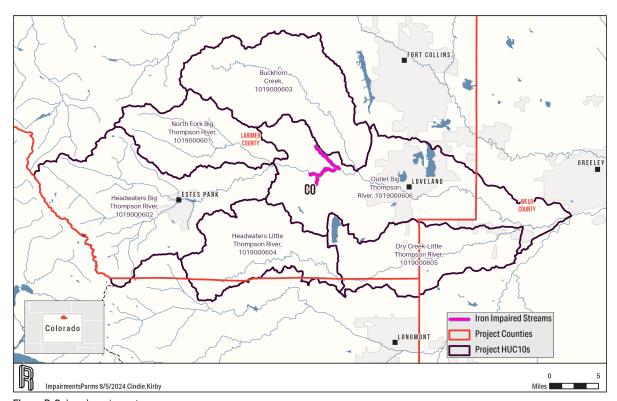


Figure B-8. Iron Impairments.

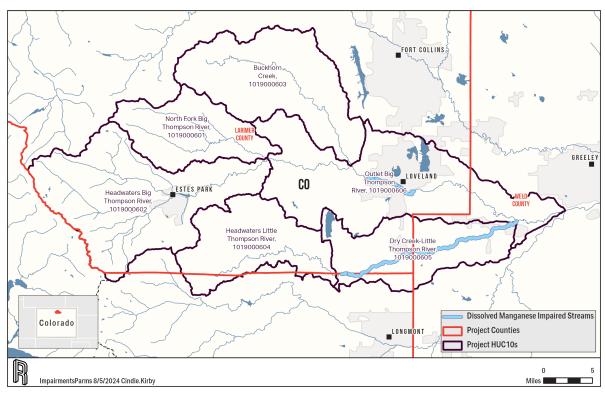


Figure B-9. Manganese Impairments.

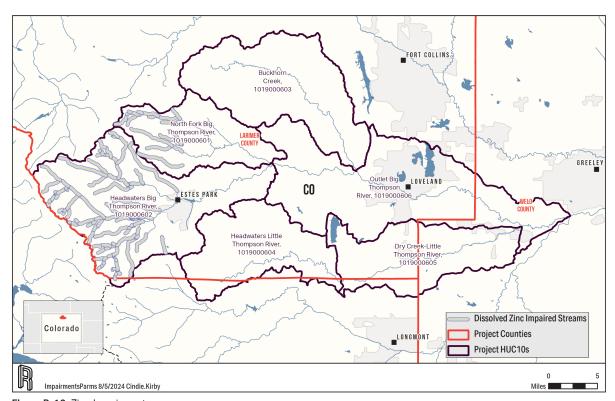


Figure B-10. Zinc Impairments.

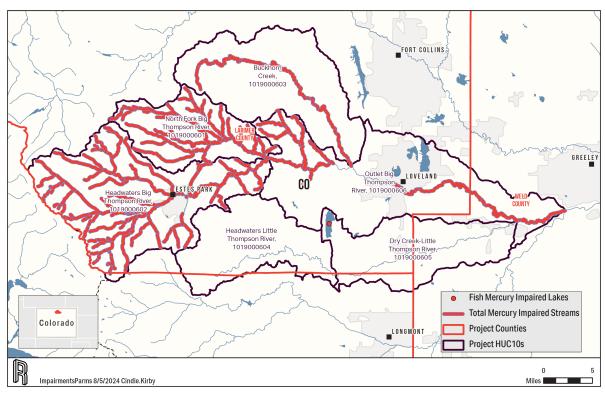


Figure B-11. Mercury Impairments.

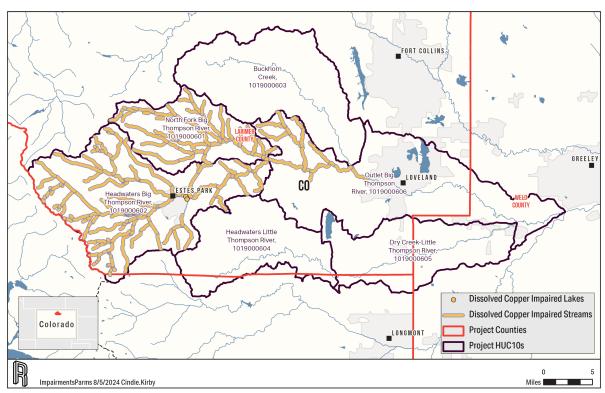
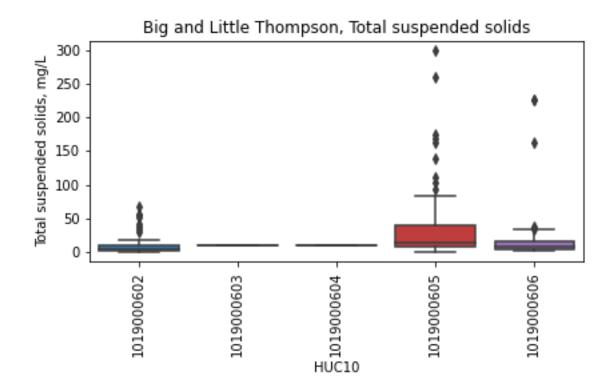
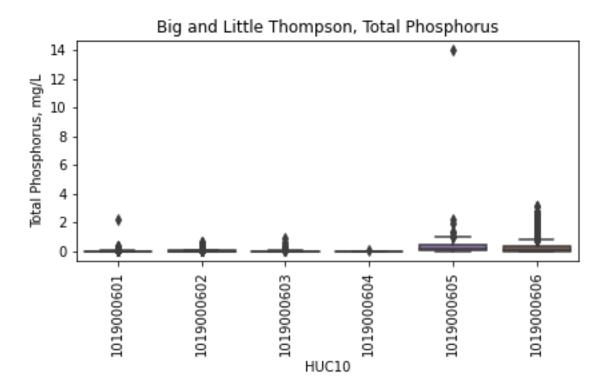


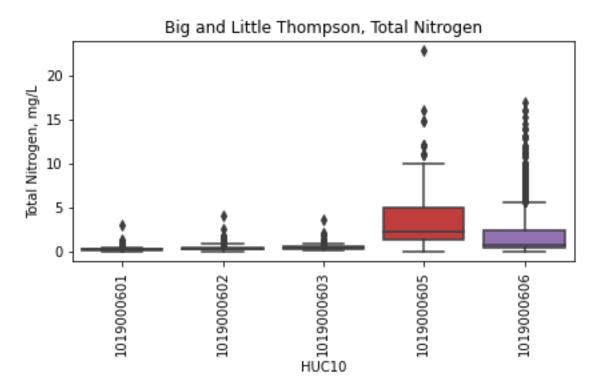
Figure B-12. Copper Impairments.

APPENDIX C

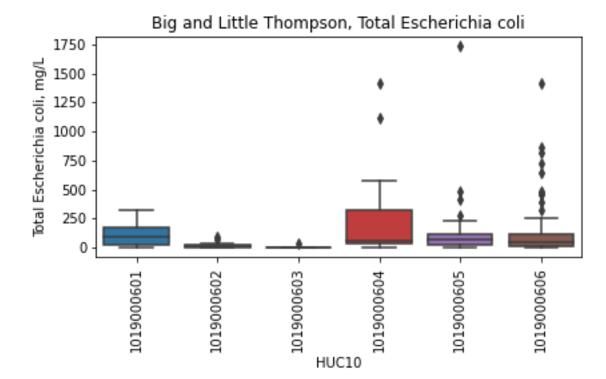
APPLICABLE WATER QUALITY BOX PLOTS BY HUC10

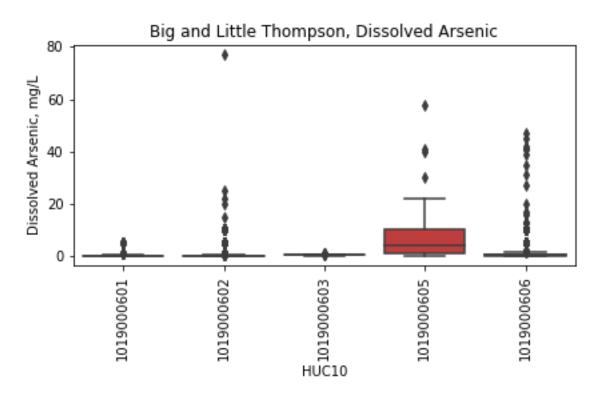


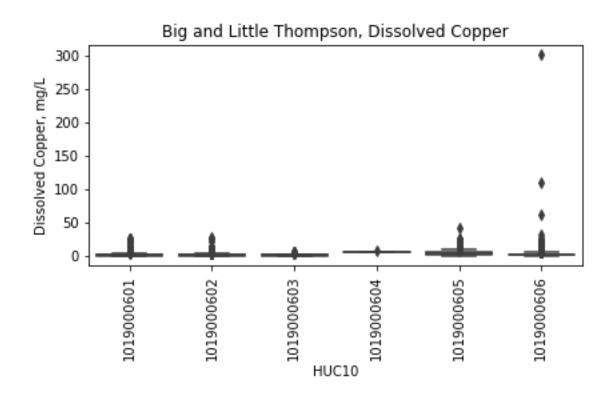

DATASET

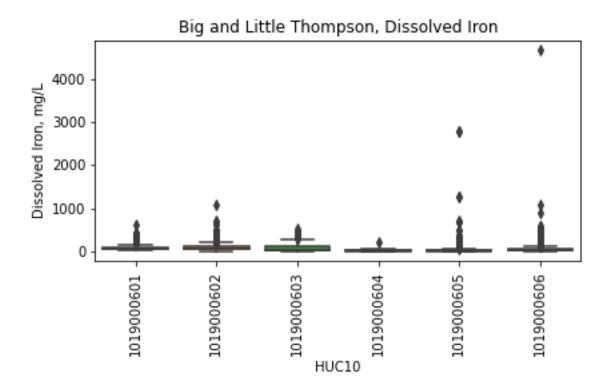

Data for boxplots were collected for the years 1990 through 2023 from various sources. Sources included the Water Quality Portal, the Colorado Data Sharing Network, Northern Water, ERAMS, and numerous individuals including Paul Bremser (St. Vrain), Andy Fayram (City of Loveland), Brian Hathaway (City of Greeley), and Jason Meier (Fossil Creek). Data were organized and grouped into a single file with consistent naming and units for applicable parameters and were assigned a "Y" or a "N" for an attribute representing if the monitoring point was located on a mainstem HUC10 reach. The boxplots only include data along the mainstem HUC10 reaches because water quality can vary greatly for headwater streams.

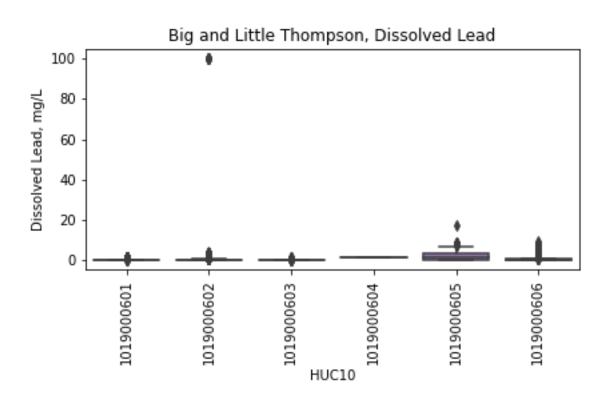
PLET PARAMETERS

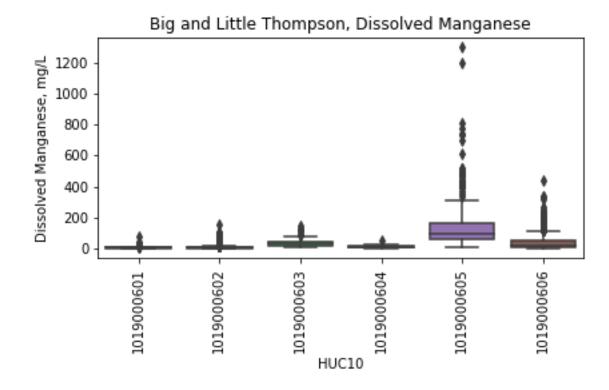


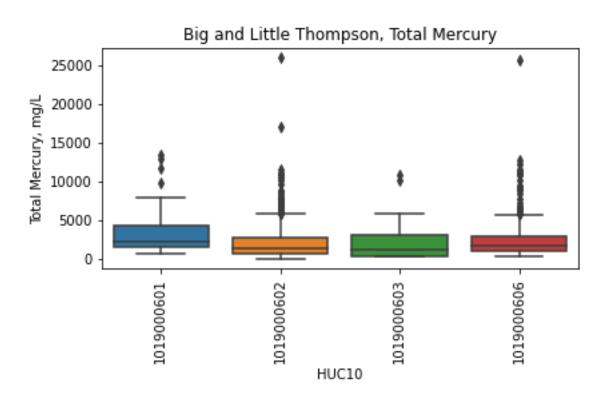


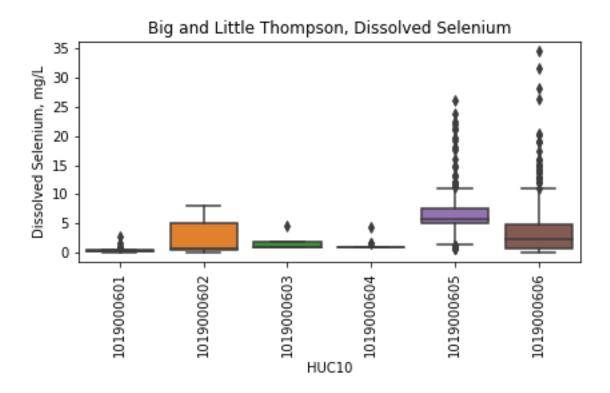


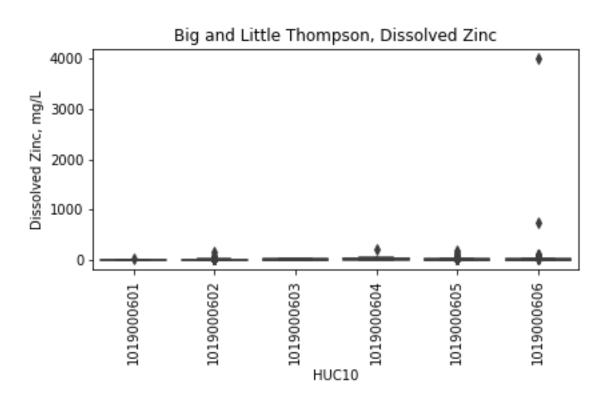



HEAVY METALS









APPENDIX D

PLET SCENARIO REDUCTIONS

Table D-1. PLET Scenario Reductions (Page 1 of 3)

Land Use	Practice	HUC10	Nitrogen Reduction (%)	Phosphorus Reduction (%)	Sediment Reduction (%)
Cropland	Streambank Stabilization and Fencing	1019000601	0	0	0
Cropland	Streambank Stabilization and Fencing	1019000602	0	0	0
Cropland	Streambank Stabilization and Fencing	1019000603	1.88	0.92	2.01
Cropland	Streambank Stabilization and Fencing	1019000604	0	0	0
Cropland	Streambank Stabilization and Fencing	1019000605	13.75	14.61	16.96
Cropland	Streambank Stabilization and Fencing	1019000606	11.54	12.31	16.13
Cropland	35 ft Buffers	1019000601	0	0	0
Cropland	35 ft Buffers	1019000602	0	0	0
Cropland	35 ft Buffers	1019000603	0.89	0.56	1.42
Cropland	35 ft Buffers	1019000604	0	0	0
Cropland	35 ft Buffers	1019000605	7.03	9.21	11.99
Cropland	35 ft Buffers	1019000606	6	7.82	11.4
Pasture	Streambank Stabilization and Fencing	1019000601	0	0	0
Pasture	Streambank Stabilization and Fencing	1019000602	0.15	0.05	0.07
Pasture	Streambank Stabilization and Fencing	1019000603	0	0	0
Pasture	Streambank Stabilization and Fencing	1019000604	0.36	0.08	0.22
Pasture	Streambank Stabilization and Fencing	1019000605	0.7	0.28	0.2
Pasture	Streambank Stabilization and Fencing	1019000606	0.98	0.41	0.36
Pasture	35 ft Buffers	1019000601	0	0	0
Pasture	35 ft Buffers	1019000602	0.04	0.03	0.06
Pasture	35 ft Buffers	1019000603	0.17	0.09	0.25
Pasture	35 ft Buffers	1019000604	0.1	0.05	0.19
Pasture	35 ft Buffers	1019000605	0.21	0.18	0.17
Pasture	35 ft Buffers	1019000606	0.3	0.27	0.31
Pasture	Livestock Exclusion	1019000601	1.52	0.62	2.62
Pasture	Livestock Exclusion	1019000602	6.52	3.63	10.91
Pasture	Livestock Exclusion	1019000603	4.29	1.72	6.47
Pasture	Livestock Exclusion	1019000604	2.74	0.97	4.57
Pasture	Livestock Exclusion	1019000605	3.03	1.86	1.69
Pasture	Livestock Exclusion	1019000606	3.17	1.84	1.69
Feedlot	Waste Management System	1019000601	2.21	1.28	0
Feedlot	Waste Management System	1019000602	1.32	1.06	0
Feedlot	Waste Management System	1019000603	1.88	1.16	0

Table D-1. PLET Scenario Reductions (Page 2 of 3)

Land Use	Practice	HUC10	Nitrogen Reduction (%)	Phosphorus Reduction (%)	Sediment Reduction (%)
Feedlot	Waste Management System	1019000604	1.82	0.99	0
Feedlot	Waste Management System	1019000605	1.13	1.12	0
Feedlot	Waste Management System	1019000606	1.65	1.6	0
Forest	Site Preparation/Straw/ Crimp/Net	1019000601	1.01	1.01	13.88
Forest	Site Preparation/Straw/ Crimp/Net	1019000602	0.39	0.53	5.22
Forest	Site Preparation/Straw/ Crimp/Net	1019000603	0.64	0.68	8.72
Forest	Site Preparation/Straw/ Crimp/Net	1019000604	1.06	0.98	15.72
Forest	Site Preparation/Straw/ Crimp/Net	1019000605	0.01	0.01	0.04
Forest	Site Preparation/Straw/ Crimp/Net	1019000606	0.07	0.12	0.38
Forest	Site Preparation/Straw/Crimp Seed/Fertilizer/Transplant	1019000601	1.04	1.03	14.17
Forest	Site Preparation/Straw/Crimp Seed/Fertilizer/Transplant	1019000602	0.39	0.54	5.33
Forest	Site Preparation/Straw/Crimp Seed/Fertilizer/Transplant	1019000603	0.65	0.69	8.9
Forest	Site Preparation/Straw/Crimp Seed/Fertilizer/Transplant	1019000604	1.08	1	16.06
Forest	Site Preparation/Straw/Crimp Seed/Fertilizer/Transplant	1019000605	0.01	0.01	0.04
Forest	Site Preparation/Straw/Crimp Seed/Fertilizer/Transplant	1019000606	0.07	0.12	0.39
Urban	Extended Wet Detention	1019000601	0.93	0.47	2.51
Urban	Extended Wet Detention	1019000602	3.88	2.74	10.37
Urban	Extended Wet Detention	1019000603	2.21	1.2	5.94
Urban	Extended Wet Detention	1019000604	1.42	0.68	4.18
Urban	Extended Wet Detention	1019000605	1.36	1.19	1.45
Urban	Extended Wet Detention	1019000606	1.25	1.07	1.32
Urban	Infiltration Basin	1019000601	1.01	0.45	2.19
Urban	Infiltration Basin	1019000602	4.23	2.58	9.05
Urban	Infiltration Basin	1019000603	2.41	1.13	5.18
Urban	Infiltration Basin	1019000604	1.55	0.64	3.65
Urban	Infiltration Basin	1019000605	1.49	1.12	1.26
Urban	Infiltration Basin	1019000606	1.37	1.01	1.15
Urban	Concrete Grid Pavement	1019000601	1.52	0.62	2.62
Urban	Concrete Grid Pavement	1019000602	6.35	3.57	10.85

Table D-1. PLET Scenario Reductions (Page 3 of 3)

Land Use	Practice	HUC10	Nitrogen Reduction (%)	Phosphorus Reduction (%)	Sediment Reduction (%)
Urban	Concrete Grid Pavement	1019000603	3.61	1.57	6.22
Urban	Concrete Grid Pavement	1019000604	2.33	0.89	4.38
Urban	Concrete Grid Pavement	1019000605	2.23	1.55	1.51
Urban	Concrete Grid Pavement	1019000606	2.05	1.39	1.38

APPENDIX E RESPEC STAKEHOLDER TOOLKIT

Stakeholder Toolkit June 13, 2024

Introduction

The North Front Range Water Quality Planning Association (NFRWQPA) seeks to compile a stakeholder toolkit for the five regional Nonpoint Source (NPS) Watershed Plan areas in Larimer and Weld Counties.

This toolkit will help stakeholders reach, inform and partner with their networks on the NPS watershed educational resources. <u>Here is a link</u> to a final stakeholder toolkit formatting example.

Digital Communications

Digital communications can reach a large audience on a broad scale, with tactics including:

- Press releases: This document will serve as NFRWQPA's official statement on the NPS watersheds and respective plans. The press release can be distributed to industry-relevant publications as well as local news outlets.
 - o Example
- Social media: Targeted social posts to reach industry-specific and locally relevant audiences. Content can vary based on NFRWQPA's needs, seasonality and other updates.
 - o Example
- Newsletters: Regular updates to an email list of subscribers about the plans, NPS findings and other news.
 - o Example
- **Website:** Content updates such as banner announcements, blog posts and home page edits upon project completion.
 - o Example
- **Story Map:** Multimedia application to share plan findings, next steps and other dynamic information.
 - o Example
- "Report a Concern" button or website: Dedicated resource for stakeholders to use when submitting an NPS issue to NFRWQPA (similar to a "contact us" button).
 - Example Contact Info at bottom of webpage
- Radio ads and interviews: Reach stakeholders on a local and national level through a radio ad or securing a news station interview.
 - o Example

Print Communications

Print communications can reach targeted, local audiences using the following tactics:

- **Signage:** Capture pedestrian, biking and other rolling traffic's attention with signage strategically placed in a given area. Informational signage can include water quality awareness signage in parks near streams, pet waste pickup stations, and general project information signage.
 - o **Example**
- Mailers: Reach residents and businesses via postcard to communicate project benefits and updates, as well as solicit feedback.
 - o Example

Community Outreach

Community outreach is a boots-on-the-ground approach to connecting with stakeholders and disseminating information. Community outreach also helps put a face to a project through the following tactics:

- Educational campaign: Increase awareness about the plan and NPS concerns in ways that are simplified and relatable for stakeholders.
 - o **Example**
- **Volunteer cleanup program:** Foster community pride and engagement through organizing a park cleanup day.
 - o Example
- **School visits, tours and field trips:** Create memories, connect with younger stakeholders and ignite a lifelong interest in the environment by inviting project team members to visit schools for presentations, organize park tours and host field trips.
 - <u>Example</u> project engineers visited a local library to show students that popular game Fortnite had real-life applications and similarities to simulating virtual environments in the construction industry